новые химические технологии
АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    

НА ГЛАВНУЮ 

СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ТЕНДЕРЫ

ОБЗОРЫ РЫНКОВ

Анализ рынка сывороточных белков в России
Рынок кормовых отходов кукурузы в России
Рынок рынка крахмала из восковидной кукурузы в России
Рынок восковидной кукурузы в России
Рынок силиконовых герметиков в России
Рынок синтетических каучуков в России
Рынок силиконовых ЛКМ в России
Рынок силиконовых эмульсий в России
Рынок цитрата кальция в России
Анализ рынка трис (гидроксиметил) аминометана в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English
  Экспорт статей (rss)

ТЕПЛОИЗОЛЯЦИЯ

1 Материалы и технологии
2

Спонсор тематического раздела "Теплоизоляция" - ООО "Дау Кемикал" Комплексные Строительные Решения

Подробную информацию об инновационных продуктах и решениях Dow для строительной отрасли можно узнать, посетив сайт www.styrofoam.ru

Приветствуем вас, уважаемые читатели!

Полимеры все глубже внедряются в строительство, находя эффективное применение в различных его сферах. Одно из наиболее динамично развивающихся «строительных» направлений – это использование современных материалов для тепло- и гидроизоляции. В России их производство демонстрирует стабильные темпы роста, составляя около 15% в год. При этом по некоторым позициям наш рынок буквально «ставит рекорды». За какие-то несколько лет в нашей стране сформировалась индустрия изоляционных материалов на основе полистирола, которые, благодаря своим уникальным свойствам и удобству применения, получили широкое распространение и популярность у потребителя.

Развитию данного рынка также способствует необходимость внедрения энергосберегающих технологий в строительстве, которые позволяют существенно сократить потери тепла. Лидирующие позиции здесь принадлежат, без сомнения, полимерным вспененным материалам. Эти продукты, появившиеся более 60 лет назад, обладают богатым потенциалом, чтобы быть востребованными не только «сегодня», но и «завтра». Большое значение для развития нашего рынка имеют опыт и достижения лидеров мировой индустрии. Компания Dow Chemical, являясь разработчиком и первопроходцем технологии  знаменитого экструдированного пенополистирола, приглашает Вас ознакомится в этом разделе с материалами по прогрессу, инновациям и тенденциям в индустрии полимерной тепло- и гидроизоляции.

DOW CHEMICAL                                                                         DOW на строительном рынке

Список сообщений |

10.08.2011

ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ ОКОННЫХ КОНСТРУКЦИЙ


Программа энергосбережения в строительстве и эксплуатации зданий направлена на всемерное снижение потребления энергии, повышение энергоэффективности зданий. Большую роль при этом играют светопрозрачные ограждения – окна, витражи и другие, поскольку современный уровень их теплозащиты значительно уступает теплозащите стеновых ограждающих конструкций зданий и теплопотери через светопрозрачные ограждающие конструкции доходят до 40% от всех теплопотерь здания.


 

При этом теплопередача в наружных ограждающих конструкциях осуществляется по трем направлениям: теплопроводность, конвекция и тепловое излучение. В непрозрачных стеновых конструкциях ограничение теплопередачи осуществляется в основном в соответствии с принципами теплопроводности и с использованием теплоизоляционных материалов (пенопласта, стекловолокна, пенополиуретана и др.)

 

В настоящее время в России применяются следующие основные способы повышения энергоэффективности светопрозрачных конструкций:

- переход в стеклопакетах на теплоизоляционные дистанционные рамки;
- применение в стеклопакетах  стёкол с теплоотражающими покрытиями;
- заполнение стеклопакетов инертными газами. 


В светопрозрачных конструкциях (СПК) при степени остекления от 0,6 и выше тепловые потери связаны в большей степени с тепловым излучением и конвективным теплообменом. В связи с этим при разработке и проектировании СПК большое внимание уделяется мероприятиям по ограничению конвективной и лучистой составляющей теплопередачи. Так, например, при ограничении размеров полостей в профильных системах и снижении конвективной составляющей теплопередачи можно добиться существенного увеличения термического сопротивления светонепрозрачного элемента СПК. Как показывает практика эксплуатации и расчеты, замена трехкамерного ПВХ-профиля на пятикамерный позволяет повысить теплозащитные качества светонепрозрачного участка СПК более чем 15%. А при применении в стеклопакетах мягкого теплоотражающего покрытия и замещении в межстекольном пространстве воздуха на криптон позволяет повысить теплозащитные качества светопрозрачного участка до 3 и более раз. Кроме того, замена алюминиевой дистанционной рамки на менее теплопроводную рамку, например из термикса, может существенно повысить температуру поверхности краевой зоны.

 

Трехкамерный ПВХ-профиль

На рис. 1 представлена изотерма по сечению трехкамерного ПВХ-профиля со стальным армирующим профилем, заполненным калибровочной панелью, при перепаде температур -20°С – +20°С, полученная расчетным методом. Сопротивление теплопередаче такого профиля рама + створка в среднем составляет 0,55 м2 °С/Вт с нормативными сопротивлениями теплопереходу на границе воздух – конструкция. При расчете камеры в профиле приняты как замкнутые воздушные прослойки. Коэффициент теплопроводности ПВХ принят равным 0,17 Вт/м2 °С, коэффициент теплопроводности стального армирующего профиля – соответственно 50 Вт/м2 °С, коэффициент теплопроводности резинового уплотнителя – соответственно 0,24 Вт/м2 °С.

 

Пятикамерный ПВХ-профиль

На рис. 2 представлена изотерма по сечению пятикамерного ПВХ-профиля со стальным армирующим профилем, заполненного калибровочной панелью, при перепаде температур -20°С – +20°С, полученная расчетным методом. Сопротивление теплопередаче такого профиля рама + створка в среднем составляет 0,64 м2 °С/Вт с нормативными сопротивлениями теплопереходу на границе воздух – конструкция, что на 16% превышает сопротивление теплопередаче трехкамерной системы рама + створка. При расчете характеристики материалов профиля приняты такие же, как и для трехкамерного профиля.


Для оценки влияния структуры стеклопакета на его теплозащитные качества проведены теплотехнические исследования разных модификаций двухкамерного стеклопакета одной и той же ширины (32 мм).

 

Стеклопакет заполненный воздухом

На рис. 3 представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с обычными стеклами и заполненного осушенным воздухом при перепаде температур -20°С – +20°С. При расчете приняты нормативные значения сопротивлений теплопереходу на границе воздух – стекло, а коэффициент теплопроводности стекла принят равным 1,0 Вт/м2 °С. Сопротивление теплопередаче по центру исследованного стеклопакета составило 1/1,86 = 0,54 (м2 °С/Вт).

 

Стеклопакет заполненный аргоном

На рис. 4 представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с обычными стеклами и заполненного аргоновой смесью. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущем расчете. Сопротивление теплопередаче по центру исследованного стеклопакета составило 0,59 (м2°С/Вт). Замещение осушенного воздуха на аргоновую смесь позволило повысить теплозащитные качества рассмотренного СПД до 9%.

 

Стеклопакет заполненный криптоновой смесью

На рис. 5  представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с обычными стеклами и заполненного криптоновой смесью. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Сопротивление теплопередаче по центру исследованного варианта стеклопакета составило  0,65 (м2 °С/Вт). Замещение осушенного воздуха на криптоновую смесь в СПД с обычными стеклами позволило повысить его теплозащитные качества с 0,54 (м2 °С/Вт) до 0,65 (м2 °С/Вт) – более чем на 20%.

 

Стеклопакет со стеклами с мягкими покрытиями

На рис. 6 представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с двумя стеклами с  мягкими покрытиями и заполненного осушенным воздухом. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Сопротивление теплопередаче по центру исследованного варианта стеклопакета составило 0,96 (м2 °С/Вт). Использование в СПД двух стекол с мягким покрытием позволило повысить его теплозащитные качества с 0,54 (м2 °С/Вт) до 0,96 (м2 °С/Вт) – более чем на 75%.

 

Стеклопакет со стеклами с мягкими покрытиями и криптоновой смесью

На рис. 7  представлены результаты теплотехнического расчета стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с двумя стеклами с  мягкими покрытиями и заполненного криптоновой смесью. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Сопротивление теплопередаче по центру исследованного варианта стеклопакета составило 1,74 (м2 °С/Вт). Использование в СПД двух стекол с мягким покрытием и одновременным замещением осушенного воздуха на криптоновую смесь в СПД позволило повысить его теплозащитные качества с 0,54 (м2 °С/Вт) до 1,74 (м2 °С/Вт) – более чем в три раза.

 

Стеклопакет с алюминиевыми дистанционными рамками

На рис. 8  представлены изотермы  стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с алюминиевыми дистанционными рамками. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Коэффициент теплопроводности алюминиевого сплава принят равным 160 Вт/м °С. Температура на поверхности стеклопакета в зоне    алюминиевой дистанционной рамки при tн= -20°С и   tв= +20оС  составляет не более 0,2°С (недопустимую всеми действующими нормативными документами).

 

Стеклопакет с дистанционными рамками из термикса

На рис. 9  представлены изотермы  стеклопакета СПД 4-10-4-10-4 (шириной 32 мм) с дистанционными рамками из термикса. При расчете приняты такие же нормативные значения сопротивлений теплопереходу на границе воздух – стекло и коэффициент теплопроводности стекла, что и в предыдущих расчетах. Коэффициент теплопроводности термикса принят равным 0,17 Вт/м °С. Температура на поверхности стеклопакета в зоне дистанционной рамки при tн= -20°С и   tв= +20°С составляет более 10°С. Таким образом, замена в рассматриваемой СПД алюминиевой дистанционной рамки на менее теплопроводную рамку из термикса  повысило температуру в краевой зоне стеклопакета на  10°С.

1 | 2

Куплю

19.04.2011 Белорусские рубли в Москве  Москва

18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

Продам

19.04.2011 Продаем скипидар  Нижний Новгород

19.04.2011 Продаем растворители  Нижний Новгород

19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

ТЕМАТИЧЕСКИЕ РАЗДЕЛЫ

ПИЩЕВАЯ ХИМИЯ

Рецепты и ингредиенты

ЛАКОКРАСКА

Технологии и инновации ЛКП

ФАРМАХИМИЯ

Технологии, инновации, рынок

Полимерные трубы

Борьба за коммуникации

Смазочные материалы

МАСЛОблог

АГРОХИМИЯ

Компании, технологии, рынок

ТЕХНОЛОГИИ АЗОТНОЙ ПРОМЫШЛЕННОСТИ

Процессы и прогресс

ЭНЕРГОСБЕРЕЖЕНИЕ

Технологии, инновации, опыт

ТЕПЛОИЗОЛЯЦИЯ

Материалы и технологии

СТРОЙХИМИЯ

Композиционные материалы, добавки

Полимерная революция

Прорывные технологии пластиндустрии

НАНОТЕХНОЛОГИИ

Под знаком НАНО

МЕБЕЛЬНАЯ ХИМИЯ

Смолы, покрытия, адгезивы

РОЗА ВЕТРОВ

Транспорт и логистика химических грузов

ТАРА и УПАКОВКА

Решения для промышленных грузов

БИОГАЗ В РОССИИ

Биогазовые технологии

КАБЕЛЬПРОМ

Материалы и инновации для кабельной индустрии

ШЛАКИ

Расширяя сырьевую базу

IT в ХИМПРОМЕ

Автоматизация и телекоммуникации

Химия для красоты

Прогресс и технологии

Все номера
Rambler's Top100 Рейтинг@Mail.ru
Copyright © Newchemistry.ru 2006. All Rights Reserved