НА ГЛАВНУЮ 

КОТАКТЫ  

АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    
СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ОБЗОРЫ РЫНКОВ

Исследование рынка резиновых спортивных товаров в России
Исследование рынка медболов в России
Рынок порошковых красок в России
Рынок минеральной ваты в России
Рынок СБС-каучуков в России
Рынок подгузников и пеленок для животных в России
Рынок впитывающих пеленок в России
Анализ рынка преформ 19-литров в России
Исследование рынка маннита в России
Анализ рынка хлорида кальция в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English

СЛОВАРЬ ТЕРМИНОВ

ПОИСК В РАЗДЕЛЕ    

Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

КОНДУКТОМЕТРИЯ (от англ, conductivity - электропроводность и греч. metreo - измеряю), совокупность электро-хим. методов анализа, основанных на измерении электропроводности х жидких электролитов, к-рая пропорциональна их концентрации. Достоинства К.: высокая чувствительность (ниж. граница определяемых концентраций ~10-4-10-5 М), достаточно высокая точность (относит, погрешность определения 0,1-2%), простота методик, доступность аппаратуры, возможность исследования окрашенных и мутных р-ров, а также автоматизации анализа. Методы К. бывают постояннотоковые и переменнотоковые последние могут быть низкочастотными (частота тока <105 Гц) или высокочастотными (>105 Гц). Различают контактную и бесконтактную К. в зависимости от наличия или отсутствия контакта между электролитом и входными цепями измерит. прибора. наиб. распространены контактный низкочастотный и бесконтактный высокочастотный методы.
Контактные методы. Измерения проводят с помощью контактных ячеек (рис.1, а). При этом используют электроды из Pt, Ti, нержавеющей стали и др. Для измерения х р-ров с высокой концентрацией электролита (10-2-10-3 М) применяют платинированные электроды с развитой пов-стью.

441_460-29.jpg
Рис. 1. Кондуктометрич. ячейки и их эквивалентные электрич. схемы: a-контактная ячейка; б-емкостная ячейка; в-индуктивная ячейка; R-сопротивление электролита; С1-емкость двойного электрич. слоя на межфазной границе электрод - электролит; С2-емкость р-ра; С3-емкость конденсатора, образованного р-ром, стенкой ячейки и внеш. электродом; Zф-фарадеевский импеданс, связанный с протекающей на границе электрод-электролит электрохим. р-цией; L1 и L2-индуктивности соотв. электролита и катушки.

Впрямой К. непосредственно определяют концентрацию электролита по ( его р-ра (если между этими величинами имеется линейная зависимость). Метод применяется гл. обр. для анализа разб. р-ров. В случае концентрир. р-ров необходимо строить градуировочные графики. Определение в-в в присут. других электролитов возможно, если концентрации последних постоянны. На методе прямой К. основаны конструкции солемеров и др. кондуктометрич. устройств, позволяющих определять олеум, а также разл. соли в минеральной, речной и морской водах, физиол. жидкостях и др. Прямую К. применяют при контроле регенерации ионитов, очистки воды, промывки осадков, при оценке качества вин, соков и др. напитков, чистоты орг. р-рителей, газов, твердых солей, текстильных материалов, бумаги, зерна, почвы и т.д. Часто анализируемые образцы предварительно сжигают, а выделяющиеся газы поглощают подходящими р-рами. По электропроводности поглотителей определяют кол-ва газов (в частности, СО2, NO2, SO2), следовательно-содержание соответствующих элементов, напр. С, N, S, в металлах, сплавах и орг. соединениях. В косвенной К., позволяющей исследовать смеси электролитов, наряду с электропроводностью р-ров измеряют рефракцию, вязкость, рН, плотность или др. величины. Напр., при анализе пром. нитрующих смесей, содержащих H2SO4, HNO3 и Н2О, дополнительно измеряют плотность. По совокупности всех эксперим. данных определяют количеств, состав смеси. Кондуктометрическое титрование (К.т.) основано на изменении х р-ра при хим. р-циях, связанном с изменением концентрации ионов разл. подвижности. К. т. проводят в водных, водно-орг. и неводных средах. Кривые титрования, представляющие собой зависимость х от кол-ва прибавленного реагента (титранта), имеют излом в точке эквивалентности. При титровании смесей электролитов число изломов равно числу определяемых компонентов, взаимодействующих с титрантом. Форма кривых м.б. разной (рис. 2). К. т. может быть основано на разл. р-циях. наиб. широко используются кислотно-основные взаимодействия. Так, разработаны методы определения в воде к-т и оснований с
441_460-30.jpg
Рис. 2. Кривые кондуктометрич. титрования в контактной ячейке р-ром NaOH: 1 - соляной к-ты; 2 - CH3COOH; 3 - смеси HCl+СН3СООН+(C2H5)3N.НCl+фенол.

рК[10, солей слабых к-т или оснований. При титровании сильными основаниями сильных или слабых к-т х до точки эквивалентности соответственно понижается (т.к. высокоподвижные ионы Н+ заменяются менее подвижными катионами титранта) или увеличивается (в результате диссоциации соли). При избытке сильного основания после точки эквивалентности ( резко увеличивается (рис. 2, кривые 1 и 2). При титровании солей ( до точки эквивалентности сравнительно мало изменяется, т. к. подвижности заменяющих друг друга ионов близки. Поэтому возможен анализ смесей солей с к-тами или основаниями, содержащих от 2 до 5 компонентов (рис. 2, кривая 3). При К. т., основанном на комплексообразовании, катионы (напр., Fe3+ , Cu2+, Рb2+, РЗЭ) титруют этилендиаминтетраацетатом Na, а также тартрат-, оксалат-, цитрат-, цианид-ионами и др. Р-ции осаждения применяют для кондуктометрич. определения как анионов, так и катионов. Напр., р-ром AgNO3 оттитровывают Сl-, Вr-, I-, CN-; р-ром Ва(ОСОСН3)2 или ВаСl2-SO2-, Сr42-; р-ром Th(NO3)3-F-, SiF62-; р-ром Na2SeO3-Mn2+, Co2+ . Методы К. т., основанные на р-циях окисления-восстановления, используются редко. При т. наз. хронокондуктометрич. титровании р-р титранта подается в реакц. сосуд (электрохим. ячейку) с постоянной скоростью, так что время титрования пропорционально кол-ву прибавленного титранта. Концентрации в-в определяют по кривым "электропроводность р-ра - время титрования". Обычно осуществляется автоматич. запись кривых. Все определения, проводимые обычным К. т., могут быть осуществлены хронокондуктометрически. Контактные методы отличаются высокой точностью. Они применяются не только для хим. анализа, но и для изучения кинетики р-ций, определения констант диссоциации (ассоциации) электролитов, р-римости осадков, коэф. диффузии и т.д.
Бесконтактные методы. Применяются для относительных измерений электропроводности, гл. обр. для высокочастотного титрования. Измерения проводят с применением емкостных (С-) или индуктивных (L-) ячеек, представляющих собой сосуды из диэлектрика, к-рые соответственно имеют с внеш. стороны не менее двух металлич. электродов (рис. 1,б) или помещены в магн. поле катушки индуктивности (рис. 1,в). Электроды С-ячейки или катушка индуктивности соединяются с высокочастотным генератором. Электропроводность электролита при токе высокой частоты обусловлена не только реальным перемещением зарядов, но в большей мере потерями электрич. энергии в емкостной и индуктивных ячейках. Это отражается на реактивной составляющей X полного сопротивления (импеданса) цепи Z2 = R2 + X2, где R-активное сопротивление, X=XL-ХC, XL и ХC - соотв. индуктивное и емкостное сопротивление цепи. Индуктивные ячейки используют обычно для измерения сравнительно высокой электропроводности, а емкостные - для измерения низкой электропроводности. Чувствительность измерения повышается в С-ячейках при использовании диэлектриков с высокой диэлектрич. проницаемостью, уменьшении толщины стенок сосуда и увеличении площади электродов, а в L-ячейках - с увеличением объема пробы. Применяются также комбинированные LC-ячейки, RC- и RL-ячейки с повыш. чувствительностью, а также многозвенные ячейки с разл. числом электродов, включенных в фазовращающие контуры автоколебат. генераторов. При высокочастотном титровании необходимо предварительно выбирать условия с учетом характеристич. кривой ячейки, т.е. зависимости 1/XL или 1C от х (рис. 3). Чем больше интервал между значениями (:0 и (::, в к-ром эта зависимость линейна, тем удобнее ячейка для измерений. Кроме того, чувствительность измерений различна на разл. участках характеристич. кривой; напр., в случае кривой 1 чувствительность наименьшая в максимуме и наибольшая в точках перегиба.
441_460-31.jpg
Рис. 3. Характеристич. кривые бесконтактных высокочастотных ячеек: 1,2,3 - зависимости обратных величин соотв. активной, емкостной и индуктивной составляющих Z от lg(.

Кривые высокочастотного титрования имеют минимум (как кривая 1 на рис. 2) или максимум, а также могут представлять собой М-образные кривые. Бесконтактные методы уступают контактным по точности, но превосходят их по чувствительности. Кроме того, из-за отсутствия взаимодействия материала электрода с исследуемой средой эти методы позволяют проводить измерения при высоких и низких т-рах, в агрессивных средах, в замкнутых объемах. Они применяются для кислотно-основных титрований на фоне дифференцирующих р-рителей (СН3СООН, ацетон, диоксан и др.), детектирования в-в в хроматографии, экспресс-анализа орг. соед., воздуха и пром. газов, анализа хим. реактивов, контроля качества лек. ср-в в запаянных ампулах, для изучения комплексообразования, гидролиза, сольватации, фазовых переходов.
===
Исп. литература для статьи «КОНДУКТОМЕТРИЯ»:
Худякова Т. А., Крешков А. П., Теория и практика кондуктометрического и хронокондуктометрического анализа, М., 1976; Лопатин Б. А., Высокочастотное титрование с многозвенными ячейками, М., 1980; Грилихес М.С., Филановский Б. К., Контактная кондуктометрия, Л., 1980.
Т. А. Худякова. Б. К. Филановский. М.С. Грилихес.

Страница «КОНДУКТОМЕТРИЯ» подготовлена по материалам химической энциклопедии.

Куплю

19.04.2011 Белорусские рубли в Москве  Москва

18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

Продам

19.04.2011 Продаем скипидар  Нижний Новгород

19.04.2011 Продаем растворители  Нижний Новгород

19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

Rambler's Top100
Copyright © Newchemistry.ru 2006. All Rights Reserved