НА ГЛАВНУЮ 

КОТАКТЫ  

АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    
СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ОБЗОРЫ РЫНКОВ

Исследование рынка резиновых спортивных товаров в России
Исследование рынка медболов в России
Рынок порошковых красок в России
Рынок минеральной ваты в России
Рынок СБС-каучуков в России
Рынок подгузников и пеленок для животных в России
Рынок впитывающих пеленок в России
Анализ рынка преформ 19-литров в России
Исследование рынка маннита в России
Анализ рынка хлорида кальция в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English

СЛОВАРЬ ТЕРМИНОВ

ПОИСК В РАЗДЕЛЕ    

Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

СВИНЕЦ (Plumbum) Pb, хим. элемент IV гр. периодич. системы, ат. н. 82, ат. м. 207,2. Природный С. состоит из пяти стабильных изотопов: 202Рb (следы), 204Рb (1,5%), 206Рb (23,6%), 207Рb (22,6%) и 208Рb (52,3%). Последние три изотопа-конечные продукты радиоактивного распада соотв. U, Ас и Th. В природе образуются и радиоактивные изотопы: 209Рb, 210Рb, 211Рb, 212Рb, 214Рb. Поперечное сечение захвата тепловых нейтронов прир. смеси ок. 0,2·10-28 м2; хороший поглотитель рентгеновского и g-из-лучения. Конфигурация внеш. электронной оболочки атома 6s26p2; степени окисления +2 (наиб. характерна) и +4; энергии ионизации Рb0 : Рb+ : Рb2+ равны соотв. 7,41678 и 15,0320 эВ; работа выхода электрона 4,05 эВ; электроотрицательность по Полингу 1,55; атомный радиус 0,175 нм, ионные радиусы (нм, в скобках даны координац. числа) Рb4+ 0,079 (4), 0,092 (6), Рb2+ 0,112 (4), 0,133(6).

Содержание С. в земной коре 1,6-10 3% по массе, в водах Мирового океана 0,03 мкг/л (41,1 млн. т), в речных водах 0,2-8,7 мкг/л. Известно ок. 80 минералов, содержащих С., главнейший из них-галенит, или свинцовый блеск, PbS. Небольшое пром. значение имеют англезит PbSO4 и церус-сит РbСО3. В рудах С. сопутствуют Сu, Zn; Cd, благородные металлы, Bi, Те и др. ценные элементы. Прир. фон в атмосфере 2·10-9-5·10-4 мкг/м3. В теле взрослого человека содержится 7-15 мг С.

Свойства. С.-металл синевато-серого цвета, кристаллизуется в гранецентрир. кубич. решетке типа Сu, а — = 0,49389 нм, z = 4, пространств. группа Fm3m. С.-один из легкоплавких металлов, тяжелый цветной металл; т. пл. 327,50 °С, т. кип. 1751 °С; плотн., г/см3: 11,3415 (20 °С), 10,686 (327,6 °С), 10,536 (450 °С), 10,302 (650 °С), 10,078 (850 °С); 4060-1.jpg 26,65 Дж/(моль · К); 4060-2.jpg 4,81 кДж/моль,4060-3.jpg 177,7 кДж/моль;4060-4.jpg64,80 ДжДмоль · К); давление пара, Па: 4,3·10-7 (600 К), 9,6·10-5 (700 К), 5,4·10-2 (800 К). 1,2·10-1 (900 К), 59,5 (1200 К), 8,2·102 (1500 К), 12,8·103 (1800 К). С.-плохой проводник тепла и электричества; теплопроводность 33,5 Вт/(м·К) (менее 10% от теплопроводности Ag); температурный коэф. линейного расширения С. (чистотой 99,997%) в интервале т-р 0-320 °С описывается ур-нием: a = 28,15·10-6t + 23,6·10-9t2 °C-1; при 20°С r 20,648 мкОм·см (менее 10% от r Ag), при 300 °С и 460 °С соотв. 47,938 и 104,878 мкОм·см. При -258,7°С r С. падает до 13,11·10 -3 мкОм·см; при 7,2 К он переходит в сверхпроводящее состояние. С. диамагнитен, магн. восприимчивость —0,12·10-6. В жидком состоянии С. жидкотекуч, h в интервале т-р 330-800 °С изменяется в пределах 3,2-1,2 мПа·с; g в интервале 330-1000 °С находится в пределах (4,44-4,01)·10-3 Н/м.

С. мягок, пластичен, легко прокатывается в тончайшие листы. Твердость по Бринеллю 25-40 МПа; sраст 12-13 МПа, sсж ок. 50 МПа; относит. удлинение при разрыве 50-70%. Значительно повышают твердость и прочность С. Na, Ca и Mg, но уменьшают его хим. стойкость. Медь увеличивает антикоррозионную стойкость С. (к действию H2SO4). С добавкой Sb возрастает твердость, а также кислотоупорность С. по отношению к H2SO4. Понижают кислотоупорность С. Bi и Zn, a Cd, Те и Sn повышают твердость и сопротивление усталости С. В С. практически не раств. N2, CO, CO2, O2, SO2, H2.

В хим. отношении С. довольно инертен. Стандартный электродный потенциал С. —0,1265 В для Рb0/Рb2+. В сухом воздухе не окисляется, во влажном-тускнеет, покрываясь пленкой оксидов, переходящей в присут. СО2 в основной карбонат 2РbСО3·Рb(ОН)2. С кислородом С. образует ряд оксидов: Рb2О, РbО (глет), РbО2, Рb3О4 (сурик) и Рb2О3 (см. Свинца оксиды). При комнатной т-ре С. не реагирует с разб. серной и соляной к-тами, т. к. образующиеся на его пов-сти труднорастворимые пленки PbSO4 и РbС12 препятствуют дальнейшему растворению металла. Конц. H2SO4 (>80%) и НС1 при нагр. взаимод. со С. с образованием р-римых соед. Pb(HSO4)2 и Н4[РbСl6]. С. устойчив по отношению к фтористоводородной к-те, водным р-рам NH3 и щелочей и к мн. орг. к-там. Лучшие р-рители С.-разб. HNO3 и СН3СООН. При этом образуются свинца нитрат Pb(NO3)2 и свинца ацетат Рb(СН3СОО)2. С. заметно раств. также в лимонной, муравьиной и винной к-тах.

Соли Pb(IV) м. б. получены электролизом подкисленных H2SO4 р-ров солей Pb(II); важнейшие из них-свинца сульфат Pb(SO4)2 и ацетат Рb(ОСОСН3)4. Соли С. легко гидро-лизуются. Рb -энергичный окислитель, поэтому, напр., не существуют РbI4 и РbВr4. При разряде свинцового аккумулятора Рb4+ также служит окислителем:

Рb + РbO2 + 2H2SO4 :2PbSO4 + 2Н2О

При взаимод. оксидов Pb(IV) и Pb(II) с расплавами щелочей образуются соли-соотв. плюмбаты(IV) и плюмбиты(II), напр. Na2PbO3, Na2PbO2. С. медленно раств. в конц. р-рах щелочей с выделением Н2 и образованием М4[Рb(ОН)6].

При нагревании С. реагирует с галогенами, образуя свинца галогениды. С азотистоводородной к-той С. дает свинца азид Pb(N3)2, с серой при нагр.- сульфид PbS (см. Свинца халь-когениды). Гидриды для С. не характерны. В нек-рых р-циях обнаруживают тетрагидрид РbН4-бесцв. газ, легко разлагающийся на Рb и Н2; образуется при действии разб. соляной к-ты на Mg2Pb. См. также Свинца титанат, Сви-нецорганические соединения.

Получение. Осн. источник получения С.-сульфидные по-лиметаллич. руды. Селективной флотацией из руд, содержащих 1-5% Рb, получают свинцовые и др. концентраты. Свинцовый концентрат обычно содержит 40-75% Рb, 5-10% Zn, до 5% Сu, а также благородные металлы и Bi. Ок. 90% С. получают по технологии, включающей стадии: агломерирующий обжиг сульфидных концентратов, шахтная восстановит. плавка агломерата и рафинирование чернового С. Разрабатывают автогенные процессы плавки, позволяющие использовать тепло сгорания сульфидов.

Агломерирующий обжиг при традиц. произ-ве С. проводят на прямолинейных машинах с дутьем воздуха либо путем просасывания его. При этом PbS окисляется преим. в жидком состоянии: 2PbS + 3О2 : 2РbО + 2SO2. В шихту добавляют флюсы (SiO2, CaCO3, Fe2O3), к-рые, реагируя между собой и с РbО, образуют жидкую фазу, цементирующую шихту. В готовом агломерате С. в осн. концентрируется в свинцовосиликатном стекле, занимающем до 60% объема агломерата. Оксиды Zn, Fe, Si, Ca кристаллизуются в форме сложных соед., образуя жаропрочный каркас. Эффективная (рабочая) площадь агломерац. машин 6-95 м2.

В готовом агломерате содержится 35-45% Рb и 1,2-3% S, часть к-рой находится в виде сульфатов. Производительность агломерац. машин по агломерату зависит от содержания S в шихте и колеблется от 10 (бедные концентраты) до 20 т/(м2 · сут) (богатые концентраты); по выжигаемой S она находится в пределах 0,7-1,3 т/(м2· сут). Часть газов, содержащих 4-6% SO2, используют для произ-ва H2SO4. Степень утилизации S составляет 40-50%.

Полученный агломерат направляют на восстановит. плавку в шахтных печах. Печь для выплавки С. представляет собой шахту прямоугольного сечения, образуемую водо-охлаждаемыми коробками (кессонами). Воздух (или воздушно-кислородная смесь) подается в печь через спец. сопла (фурмы), расположенные по всему периметру печи в ниж. ряду кессонов. В шихту плавки входят в осн. агломерат и кокс, иногда загружают кусковое оборотное и вторичное сырье. Уд. проплав агломерата 50-80 т/(м2 · сут). Прямое извлечение С. в черновой металл 90-94%.

Цель плавки-максимально извлечь С. в черновой металл, a Zn и пустую породу вывести в шлак. Осн. р-ция шахтной плавки свинцового агломерата: РbОрасплав + СО : Рb + + СО2. В качестве восстановителя в шихту вводят кокс. Часть С. восстанавливается им непосредственно. Для восстановления С. требуется слабовосстановит. атмосфера (давление О24060-5.jpg10-6-10-8 Па). Расход кокса к массе агломерата при шахтной плавке 8-14%. В этих условиях оксиды Zn и Fe не восстанавливаются и переходят в шлак. Медь присутствует в агломерате в форме СuО и CuS. Оксид меди в условиях шахтной плавки легко восстанавливается до металла и переходит в С. При высоком содержании Си и S в агломерате при шахтной плавке образуется самостоят. фаза-штейн.

Осн. шлакообразующие компоненты шлаков (80-85% от массы шлака) - FeO, SiO2, CaO и ZnO-направляются на дальнейшую переработку для извлечения Zn. В шлак переходит до 2-4% Рb и ~20% Си, содержание в нем этих металлов соотв. 0,5-3,5 и 0,2-1,5%. Образующаяся при шахтной плавке (и агломерации) пыль служит исходным сырьем для извлечения редких и рассеянных элементов.

В основе автогенных процессов выплавки С. лежит экзо-термич. р-ция PbS + О2 : Рb + SO2, состоящая из двух стадий:

2PbS + 3O2:2PbO + 2SO2 PbS + 2РbО:3Рb + SO2

Преимущества автогенных способов перед традиц. техно-логией: исключается агломерац. обжиг, устраняется необходимость разбавления концентрата флюсами, что снижает выход шлака, используется тепло от горения сульфидов и исключается (частично) расход кокса, повышается извлечение SO2 с газами, что упрощает их использование и повышает безопасность на заводе. В пром-сти применяют два автогенных процесса: КИВЦЭТ-ЦС, разработанный в СССР и осуществленный на Усть-Каменогорском заводе и в Италии на заводе Порто-Весме, и американский процесс QSL.

Технология плавки по методу КИВЦЭТ-ЦС: тонкоизмельченную, хорошо высушенную шихту, содержащую концентрат, оборотную пыль и кокс, с помощью горелки инжектируют техническим О2 в плавильную камеру печи, где происходит окисление сульфидов металлов, получение С. и формирование шлака. Газы (содержат 20-40% SO2) после очистки от пыли, возвращаемой в шихту плавки, поступают на произ-во H2SO4. Черновой С. и шлак через разделит. перегородку протекают в электротермич. печь-отстойник, откуда их выпускают через летки. Кокс подают в шихту для восстановления избыточного оксида С. в плавильной зоне.

Процесс QSL проводят в агрегате типа конвертера. Печь разделена перегородкой на зоны. В плавильной зоне происходит загрузка гранулир. концентрата, плавка и окисление расплава техническим О2. Шлак поступает во вторую зону, где с помощью фурм он продувается пылеугольной смесью для восстановления С. Во всех способах плавки осн. кол-во Zn (~80%) переходит в шлак. Для извлечения Zn, а также оставшегося С. и нек-рых редких и рассеянных элементов шлак перерабатывают способом фьюмингования или вальцевания.

Черновой С., полученный тем или иным способом, содержит 93-98% Рb. Примеси в черновом С.: Сu (1-5%), Sb, As, Sn (0,5-3%), Аl (1-5 кг/т), Аu (1-30%), Bi (0,05-0,4%). Очистку чернового С. производят пирометаллургически или (иногда) электролитически.

Пирометаллургич. методом из чернового С. последовательно удаляют: 1) медь-двумя операциями: ликвацией и с помощью элементарной S, образующей сульфид Cu2S. Предварит. (грубую) очистку от Си до содержания 0,5-0,7.% проводят в отражательных либо электротермических печах с глубокой свинцовой ванной, имеющей перепад т-ры по высоте. Медь взаимод. на пов-сти с сульфидным свинцовым концентратом с образованием Cu-Pb штейна. Штейн направляют в медное произ-во либо на самостоят. гидроме-таллургич. переработку.

2) Теллур-действием металлич. Na в присут. NaOH. Натрий селективно взаимод. с Те, образуя Na2Te, всплывающий на пов-сть ванны и растворяющийся в NaOH. Плав идет на переработку для извлечения Те.

3) Олово, мышьяк и сурьму-окислением их либо О2 воздуха в отражат. печах при 700-800 °С, либо NaNO3 в присут. NaOH при 420 °С. Щелочные плавы направляют на гидрометаллургич. переработку для регенерации из них NaOH и извлечения Sb и Sn; As выводят в виде Ca3(AsO4)2, к-рый направляют на захоронение.

4) Серебро и золото-с помощью Zn, избирательно реагирующего с растворенными в С. благородными металлами; образуются AuZn3, AgZn3, всплывающие на пов-сть ванны. Образовавшиеся съемы удаляют с пов-сти для послед. переработки их на сплав Ag-Au. На этой стадии С. загрязняется Zn (0,5-0,8%).

5) Цинк-окислением воздухом либо NaNO3 в щелочном расплаве, хлорированием, а также отгонкой в вакууме.

6) Висмут-действием Са, Mg, Sb. Предварительно вводят в ванну Са и Mg, при этом образуется Bi2CaMg2, а в С. остается 0,008-0,01% Bi; затем добавляют в ванну, наряду с Са и Mg, также Sb, при этом в С. остается 0,006-0,004% Bi. Полученные на предварит. стадии богатые съемы (дроссы) направляют на переработку для извлечения из них Bi. В свинцовой ванне остаются Са, Mg, Sb.

7) Примеси Са, Mg, Sb и Zn удаляют окислением NaNO3 в присут. NaOH либо хлорированием.

Рафинирование С. осуществляют в стальных котлах полу-сферич. формы емкостью 50-300 т с открытой пов-стью ванны. Готовый С. разливают в чушки (~ 30 кг) либо блоки (~1 т). При электролитич. рафинировании чернового С'Г в качестве электролита используют водный р-р фторосили-ката С. (8-10% H2SiF6, 6-8% PbSiF6). Черновой С. предварительно рафинируют (пирометаллургически) от Sn и Си. Электролиз проводят при напряжении на ванне 0,4-0,7 В, плотн. тока 130-180 А/м2 и т-ре электролита 40-50 °С. Выход С. по току составляет 90-97%. Примеси С. концентрируются в анодном шламе.

Определение. С. определяют: по изменению степени мутности р-ра, образующегося при взаимод. Рb2+ с К2СrО4; колориметрически с дитизоном, амперометрич. титрованием с молибдатом аммония; спектрометрически с диэтилди-тиокарбаматом Na и 8-гидроксихинолином; хроматогра-фически.

Применение. До 45% С. от общего потребления идет на произ-во электродов аккумуляторов; до 20%-на изготовление проводов и кабелей и покрытий к ним; 5-20% С.-на произ-во тетраэтилсвинца. С. используют для изготовления футеровки, труб и аппаратуры в хим. пром-сти. Применяют свинца сплавы с Sn, Са, содержащие Sb, Cu, As, Cd. В стр-ве С. используют в качестве изоляции, уплотнителя швов, стыков, в т.ч. при создании сейсмостойких фундаментов. В военной технике С. применяют для изготовления шрапнели и сердечников пуль. Экраны из С. служат для защиты от радиоактивного и рентгеновского излучений.

По объему произ-ва и потребления С. занимает четвертое место среди цветных металлов после А1, Си и Zn. Произ-во С. в капиталистич. и развивающихся странах ок. 4,0 млн. т/год (1983). Осн. производители и потребители: США, ФРГ, Великобритания, Япония, Канада и Австралия.

С. был известен за 6-7 тыс. лет до н.э. народам Месопотамии, Египта и др. стран древнего мира.

С.-яд, вызывает профессиональные отравления. ПДК в воздухе рабочей зоны 0,01 мг/м3, атм. воздухе 0,003 мг/м3, воде 0,03 мг/л, почве 20,0 мг/кг. Осн. источники загрязнения С. окружающей среды: металлургич. предприятия (ежегодный выброс не менее 89 тыс.т), выхлопные газы двигателей внутр. сгорания (до 260 тыс. т/год), сточные воды пром. предприятий (выброс в Мировой океан 430-650 тыс. т/год) и др.


===
Исп. литература для статьи «СВИНЕЦ»:
Гудима Н.В., Шейн Я. П., Краткий справочник по металлургии цветных металлов, М., 1975; Смирнов М. П., Рафинирование свинца и переработка полупродуктов, М., 1977; Рабинович В. А., Хавин З.Я., Краткий химический справочник, Л., 1977; Зайцев В. Я., Маргулис Е. В., Металлургия свинца и цинка, М., 1985; Козин Л.Ф., Морачевский А. Г., Физико-химия и металлургия высокочистого свинца, М., 1991. М.П. Смирнов.

Страница «СВИНЕЦ» подготовлена по материалам химической энциклопедии.

Куплю

19.04.2011 Белорусские рубли в Москве  Москва

18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

Продам

19.04.2011 Продаем скипидар  Нижний Новгород

19.04.2011 Продаем растворители  Нижний Новгород

19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

Rambler's Top100
Copyright © Newchemistry.ru 2006. All Rights Reserved