ЭЛЕКТРОЛИТЫ ТВЁРДЫЕ, в-ва, в к-рых электропроводность осуществляется движением ионов к.-л. одного знака -катионами или анионами. Ионы передвигаются по свободным позициям в структуре в-ва, разделенным невысокими потенц. барьерами (0,1-0,5 эВ). Кол-во позиций, к-рые могут занимать ионы проводимости, намного больше кол-ва самих ионов. Кроме того, эти позиции могут различаться по степени заселенности ионами. Напр., в элементарной ячейке-Agl на 42 позиции приходятся 2 иона Ag+, причем 12 тетраэдрич. позиций являются предпочтительными. Т. обр., подрешетка ионов проводимости разупорядочена, в то время как остальные ионы Э. т. образуют жесткий каркас, и их перенос возможен по обычным механизмом образования точечных дефектов (вакансий и междоузельных ионов). Ионная составляющая общей проводимости Э. т., как правило, на 5-6 порядков больше электронной, т. е. числа переноса (см. Электропроводность электролитов)ионов проводимости практически равны 1. Коэф. диффузии Di этих ионов сравнимы с таковыми для конц. водных р-ров и соответствуют величинам порядка 10-5 - 10-6 см2/с. Э. т. относят к суперионным проводникам и часто наз. супериониками. Однако суперионик- более общее понятие, относящееся к высокопроводящим соед. как с ионной проводимостью (Э. т.), так и со смешанной ионно-электронной проводимостью. В электрохим. системах в отличие от Э. т. суперионики со смешанной проводимостью выполняют роль электродов. Температурная зависимость ионной проводимости Э. т. описывается ур-нием:
где А - константа, Т - абс. т-ра, Еа - энергия активации, k -константа Больцмана. Значениеи Еа для наиб. известных Э. т. приведены в таблице. Э. т. подразделяются на электролиты с собственным структурным разупорядочением в одной из подрешеток и с примесным. К первым относятся в-ва, структура к-рых либо уже имеет пути проводимости для ионов определенного типа, как, напр., Na--глинозем (полиалюминат натрия Na1+xAl11O17), либо приобретает их вследствие фазового перехода, как, напр., Agl ( -переход при 420 К). Пути проводимости могут иметь вид каналов [напр., в (C5H5NH)Ag5I6], щелей (напр., в Na--глиноземе) или трехмерных сеток (напр., в -Agl). К Э. т. с примесным разупорядочением относятся твердые р-ры замещения, образующиеся в ионных кристаллах при легировании их ионами с валентностью, отличной от валентности основного иона. Возникающий при этом дефицит (или избыток) заряда компенсируется образованием дефектов противоположного знака. Так, в оксидах Zr, Hf, Се и Th, легир. оксидами двух- и трехвалентных металлов (Са, Y, Sc и др.), компенсация заряда примеси осуществляется кислородными вакансиями. Флюорит CaF2 и изоморфный ему SrF2 образуют твердые р-ры замещения с фторидами трехвалентных РЗЭ, обладающих высокой подвижностью ионов F-. Последние легко обмениваются на ионы О2-. Характерное св-во Э. т.- способность к замещению одних ионов проводимости на другие. Напр., при выдерживании Na--глинозема в расплаве AgNO3 ионы Na+ м. б. полностью замещены ионами Ag+. Если же Ag-b-глинозем поместить в р-р к-ты, то можно получить глинозем с высокой проводимостью по протонам - ионам Н+.
ХАРАКТЕРИСТИКА ПОЛИКРИСТАЛИЧЕСКИХ ТВЕРДЫХ ЭЛЕКТРОЛИТОВ
Электролит |
Подвижный ион |
См/м (298 K) |
|
|
Ag+ |
337 (423 K) |
0,101a |
RbAg4I5 |
Ag+ |
28 |
0,104 |
Ag6WO4I4 |
Ag+ |
4,2 |
0,248 |
(C5H5NH)Ag5I6 |
Ag+ |
21 (323 K) |
0,198б |
Cs2Ag3Br3I2 |
Ag+ |
0,1 |
0,38 |
Cu4RbCl3I2 |
Cu+ |
47 |
0,115 |
Na2O x 10Al2O3e |
Na+ |
3,3 |
0,140 |
Na2O x 10Al2O3 |
Na+ |
0,5 |
0,148 |
Na3Zr2Si2Р012 |
Na+ |
14 (573 K) |
0,246д |
Nа3Sс2(РO4)3 |
Na+ |
19 (573 K) |
0,144в |
Na5DySi4O12 |
Na+ |
0,50 |
0,208 |
CsHSO4 |
H+ |
1,8 (435 K) |
0,33ж |
HUO2PO2 x 4H2O3 |
H+ |
0,32 |
0,32 |
H3PW12O40 x 19H2O3 |
H+ |
1,20 |
0,432 |
Cs3PW12O40 x 10H2O3 |
H+ |
1,6 |
0,223 |
Sb2O5 x 5,43H2O3 |
H+ |
0,75 |
0,16 |
0,75Li4GeO4 x 0,25Li3PO4 |
Li+ |
9,1 (573 K) |
0,42 |
Sr0,8La0,2F2,2 |
F- |
0,11 (573 K) |
0,196 |
0,91ZrO2 x 0,09Sc2O3 |
O2- |
30 (1273 K) |
0,43 |
(Bi2O3)0,8(SrO)0,2 |
O2- |
0,6 (773 K) |
0,8 |
aПри Т>420 К. бПри Т>315 К. вСтеклообразное состояние. гМонокристалл (перпендикулярно оси с). дПри Т>505 К. вПри Т>429 К. жПри Т>414 К. зДанные при относит. влажности ок. 60%
Протонпроводящие Э. т.- в осн. кристаллогидраты твердых орг. и неорг. к-т и их солей, в к-рых перенос Н осуществляется либо по сетке водородных связей молекул Н2О (механизм туннельного перехода), либо перемещением иона гидроксония Н3О+ (прыжковый механизм), либо по молекулам, адсорбир. на межзеренных границах поликристаллич. материала. Исключение составляют безводные гидросульфаты и гидроселенаты щелочных металлов (напр., CsHSO4 и CsHSeO4), к-рые приобретают высокую ионную проводимость при т-рах выше структурного фазового перехода, когда число возможных мест локализации протонов оказывается вдвое больше числа самих протонов. Обладают протонной проводимостью и мн. полимерные структуры (см. ниже). Большинство Ag+-проводящих Э. т. получают либо выращиванием монокристаллов (-Agl, RbAg4I5), либо твердофазным синтезом (RbAg4I5, (C5H5NH)Ag5I6 и др.). Для изготовления Li+-, Na+- и О2- -проводящих Э. т. используют технологию произ-ва керамики. Существуют полимерные Э. т., к-рые обладают пластичностью, из них можно изготавливать тонкие пленки толщиной 0,5-250 мкм. По электропроводности они сравнимы с жидкими и твердыми электролитами (1-10-3 См/м). Полимерные Э. т.- как правило, аморфные комплексы полимер-соль или полимер-к-та на. Получают их из полиэтиленоксида (ПЭО) и др. сходных по строению полимеров. Ион проводимости определяется природой второго компонента. При этом ион мигрирует вдоль полимерной цепи благодаря сегментальным движениям полимерной матрицы. Температурная зависимость проводимости комплексов удовлетворяет ур-нию, основанному на теории свободного объема:
где Т0 - идеальная т-ра стеклования полимера, Т - т-ра системы, В - константа. В системе ПЭО-Н3РО4 образуется комплекс (ПЭО) Н3РО4 с n =1,33, обладающий протонной проводимостью ок. 10-3 См/м (298 К). В комплексе ПЭО-NH4НSО4 анионы практически неподвижны и протон переносится катионами (2 x 10-2 См/м). В комплексах ПЭО-LiС1О4 ток переносится как ионами Li+, так и на подвижность к-рых оказывает влияние неполная диссоциация соли и образование ионных кластеров и Аморфные структуры со св-вами Э. т. существуют и среди неорг. соединений. Это - стекла, представляющие собой трехмерные сетки, не имеющие строгой периодичности, но сохраняющие ближний порядок в расположении ионов. Такие структуры типа-RbAg4I5 обнаружены в смешанных галогенидных системах AgX-CsX и AgX-CuX-CsX (X = С1, Вr, I). Используют Э. т. в химических источниках тока, ионисторах, хим. сенсорах, в качестве ионселективных мембран, при термодинамич. исследованиях и др.
Лит.: Укше Е. А., Букун Н.Г., Твердые электролиты, М., 1977; Чеботин В.Н., Перфильев М. В., Электрохимия твердых электролитов, М., 1978; Атовмян Л. О., Укше Е. А., в сб.: Физическая химия. Современные проблемы, под ред. Я. М. Колотыркина, М., 1983; Гуревич Ю. Я., Твердые электролиты, М., 1986; Мурыгин И. В., Электродные процессы в твердых электролитах, М., 1991; Сыромятников В. Г. [и др.], "Успехи химии", 1995, т. 64, в. 3, с. 265-74; Solid electrolytes, ed. by S. Geller., В., 1977; Armand M. В., Chabagno J. M., Duclot M. J., в кн.: Fast lon transport in solids, ed. P. Vashisnta, Amst., 1979, p. 131; Poulsen F. W., в кн.: High conductivity solid ionic conductors. Recent trends and applications, ed. by T. Takahashi, L., 1989, p. 166.
H. Г. Букун.
|