НА ГЛАВНУЮ 

КОТАКТЫ  

АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    
СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ОБЗОРЫ РЫНКОВ

Исследование рынка резиновых спортивных товаров в России
Исследование рынка медболов в России
Рынок порошковых красок в России
Рынок минеральной ваты в России
Рынок СБС-каучуков в России
Рынок подгузников и пеленок для животных в России
Рынок впитывающих пеленок в России
Анализ рынка преформ 19-литров в России
Исследование рынка маннита в России
Анализ рынка хлорида кальция в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English

СЛОВАРЬ ТЕРМИНОВ

ПОИСК В РАЗДЕЛЕ    

Алфавитный указатель: А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

ВОДОПОДГОТОВКА, комплекс технол. процессов обработки и очистки воды для приведения ее кач-ва в соответствие с требованиями потребителей. Осн. процессы рассмотрены ниже. Кроме того, при В. из воды могут удаляться Mn, F, синтетич. моющие и красящие в-ва, пестициды и др. В. проводят на спец. станциях, производительность к-рых может составлять от неск. м3/сут до млн. м3/сут.

Осветление. Вода поверхностных (открытых) источников, как правило, содержит крупнодисперсные и коллоидные минер. и орг. примеси, обусловливающие ее цветность. Для их удаления воду обрабатывают коагулянтами [A12(SO4)3, FeSO4, FeCl3] и флокулянтами (полиакриламидом, активной H2SiO3 и др.). Образовавшуюся хлопьевидную массу, состоящую в осн. из гидроксидов А1 и Fe и примесей, выделяют из воды в отстойниках или спец. осветлителях (осадок в них поддерживается во взвешенном состоянии потоком поступающей снизу воды), напорных или открытых фильтрах и контактных осветлителях с загрузкой из зернистых материалов (кварцевый песок, дробленый антрацит, керамзит, шунгизит и др.), а также во флотаторах, гидроциклонах, намывных фильтрах. Для частичного удаления крупнодисперсных примесей и фитопланктона, образующегося при цветении водоемов, применяют сетчатые микрофильтры, плоские и барабанные сетки. См. также Осаждение.

Обеззараживание. Наличие в воде болезнетворных микроорганизмов и вирусов делает ее непригодной для хозяйственно-питьевых нужд, а присутствие в воде нек-рых видов микроорганизмов (напр., нитчатых, зооглейных, суль-фатвосстанавливающих бактерий, железобактерий) вызывает биол. обрастание, а иногда и разрушение трубопроводов и оборудования.

Наиб. распространено хлорирование воды жидким или газообразным С12, гипохлоритами - NaClO, Са(СlO)2 и СlO2. Хлор взаимод. с водой с образованием НС1О и НС1; при рН > 4 свободный С12 практически отсутствует, при рН > 5,6 НС1О диссоциирует на Н+ и СlO-. Бактерицидность недиссоциированной НС1О в 70-80 раз больше, чем у СlO-. При наличии в воде NH3, аммониевых солей или орг. в-в, содержащих группы NH2, C12, HC1O и гипохлориты реагируют с ними, образуя неорг. и орг. моно- и дихлорамины. Монохлорамины в 3-5 раз менее бактерицидны, чем дихлорамины, к-рые в свою очередь в 20-25 раз менее эффективны свободного С12. Бактерицидность хлораминов, образованных С12, НОС1, С1О-, NH3 или солями аммония, в 8-10 раз выше, чем бактерицидность хлорпроизводных орг. аминов или иминов. Концентрацию свободного и связанного (в хлораминах) С12, необходимую для обеспечения заданного обеззараживающего эффекта, определяют по результатам пробного хлорирования. Для обеззараживания воды применяют также озон и УФ-облучение.

Стабилизация. Стабильной считается вода, к-рая не выделяет и не растворяет отложения СаСО3. Показателем стабильности служит индекс насыщения I воды карбонатом Са, к-рый рассчитывают по данным о рН и т-ре обрабатываемой воды, а также концентрации катионов Са2+ , общих щелочности и солесодержании. Исходя из этих данных, находят pHs, соответствующий насыщению воды карбонатом. На основе pHs и измеренного значения рН вычисляют I = рН — рН5. Вода считается стабильной, если I = 0; при I < 0 вода вызывает коррозию стали, чугуна и др. материалов. При I > 0 может выделяться СаСО3 с образованием противокоррозионной пленки на стенках трубопроводов и оборудования. Это связано с наличием в воде СО2: при его избытке происходит коррозия, при недостатке - пересыщение воды СаСО3, что и приводит к образованию накипи.

Для связывания СО2 в Са(НСО3)2 или NaHCO3 воду обрабатывают Са(ОН)2, Na2CO3 или др. щелочными реагентами. Многие прир. и производств. воды, идущие на охлаждение, пересыщены СаСО3, а также Mg(OH)2. При использовании в кач-ве хладагента вода нагревается, что вызывает разложение гидрокарбонатов и выпадение СаСО3; помимо этого, осаждаются Mg(OH)2 и нек-рые соли. Для устранения отложений воду подкисляют H2SO4 или НС1, обрабатывают СО2 (обычно топочными газами - т. наз. рекарбонизация), фосфатируют (напр., полифосфатами) и стабилизируют др. реагентами.

Умягчение заключается в удалении из воды катионов Са2+ и Mg2+ (см. Жесткость воды).

Реагентное умягчение основано на введении в воду в-в, обогащающих ее анионами СО32- и ОН-, в результате чего образуются труднорастворимые СаСО3 и Mg(OH)2, выделяемые из воды осаждением и фильтрованием. При обработке воды известью [гашеной Са(ОН)2 или негашеной СаО] происходит декарбонизация - устранение карбонатной жесткости; снижается также щелочность воды. Известь связывает растворенный в воде СО2 с образованием гидрокарбонатных ионов НСО2, к-рые, взаимод. с известью, превращ. в карбонаты, выпадающие в осадок. Для устранения магниевой карбонатной жесткости кол-во извести должно обеспечивать получение малорастворимой Mg(OH)2 при одноврем. эквивалентном выделении в осадок СаСО3. Предел умягчения воды известью определяется р-римостью СаСО3 и Mg(OH)2.

Воду обрабатывают известью и содой в тех случаях, когда Са и Mg присутствуют в воде не только в виде гидрокарбонатов, но и в виде хлоридов и сульфатов, т.е. для устранения как карбонатной, так и некарбонатной жесткости. При этом образуются осадки СаСО3 и Mg(OH)2, в р-р переходит Na+ (в виде Na2SO4 и NaCl) в кол-ве, эквивалентном кол-ву Na2CO3. Вода, умягченная известью и содой без подогрева, имеет остаточную жесткость порядка 0,5-1,0 ммоль/л. При нагр. воды до 35-40 °С можно поддерживать остаточную жесткость не более 0,5 ммоль/л. При подогреве воды до 100 °С и выше (термохим. умягчение, применяемое для питания паровых котлов) остаточная жесткость составляет 0,3 ммоль/л. Избыток извести повышает остаточную жесткость воды и одновременно обусловливает увеличение ее щелочности.

Катионирование в о д ы - пропускание ее через слой зернистого катеонита. В результате ионы Са2+ и Mg2+ обмениваются на ионы катеонита. Последний регенерируют р-рами солей, содержащими катионы Na+ или NH4+, либо к-тами, атомы Н к-рых вытесняют поглощенные ионы Са2+ и Mg2 + .

В связи с этим различают Na+ -, Н+ - или NH4+- катионирование. Способность разных катеонитов к обмену ионов выражается емкостью поглощения (обменной способностью) по отношению к данному иону и измеряется числом молей катионов, поглощенных 1 м3 катеонита. Различают рабочую (до "проскока" ионов Са2+ и Mg2+ с профильтрованной водой) и полную (до полного истощения катеонита) емкости поглощения. Полная емкость поглощения катионитов составляет 570-1700 моль/м3. Рабочая емкость зависит от св-в, условий регенерации катеонита, размеров зерен и высоты его слоя в фильтре, типа обменного иона, общего солесодержания, скорости фильтрования и может изменяться в пределах 40-70% от полной. См. также Иониты.

Опреснение и обессоливание. Удаление солей из воды до предела, близкого к содержанию их в дистиллированной воде (доли или неск. мг/л), наз. обессоливанием, а удаление солей до концентраций, допустимых при применении воды для питья (до 1 г/л), - опреснением.

Обессоливание дистилляцией основано на выпаривании воды с дальнейшей конденсацией пара. Испарители м. б. многоступенчатыми с использованием пара предыдущей ступени для испарения воды в последующей.

Обессоливание и опреснение воды ионным обменом достигается путем последоват. фильтрования воды через зернистые слои Н+-катеонита и ОН- -анионита. При этом находящиеся в воде катионы и анионы заменяются соотв. на Н+ и ОН-, образующие молекулы Н2О. В случае фильтрования воды через Н+ - катеонит СО2, к-рый образуется при взаимод. ионов HCO3- и Н+, удаляется в спец. дегазаторе продуванием воздуха через воду. Емкость поглощения анионитами отд. анионов различна и определяется св-вами анионитов, кислотностью воды и рядом техн. факторов (крупностью зерен и др.). Полная емкость анионитов составляет 1500 моль/м3. Низкоосновные аниониты регенерируют NaOH, Na2CO3, NaHCO3, высокоосновные -NaOH. Простейшая одноступенчатая схема обессоливания включает Н+ -катионитный фильтр, декарбонизатор для выделения из воды СО2 и ОН- - анионитный фильтр. При такой схеме вода частично обессоливается (до солесодержания 5-10 мг/л), при этом концентрация в ней H2SiO3 практически не снижается. Более глубокое обессоливание воды м. б. достигнуто на двухступенчатых установках (до солесодержания 0,1-0,3 мг/л и концентрации H2SiO3 до 0,02-0,1 мг/л). Практически полностью воду можно обессолить (до солесодержания 0,05-0,1 мг/л и концентрации H2SiO3 менее 0,02-0,05 мг/л) на трехступенчатой ионитной установке, причем вместо двух фильтров (Н+ - и ОН- -фильтры) на третьей ступени м. б. применен фильтр со смешанной катионитно-анионитной загрузкой. При двух-и трехступенчатой ионитных установках на первой ступени используют низкоосновный, на второй и третьей ступенях - высокоосновный аниониты.

Обессоливание воды электродиализом и обратным осмосом не требует применения хим. реагентов и характеризуется существенно меньшими энергетич. затратами по сравнению с дистилляцией. При электродиализе используют селективные мембраны ионообменные, при обратном осмосе - полупроницаемые мембраны, пропускающие молекулы воды, но задерживающие растворенные минер. и орг. в-ва. Расход электроэнергии на 1 м3 воды, обессоленной электродиализом, составляет 6-30 кВт*ч/м3, обратным осмосом - 1,5-15 кВт*ч/м3. Электродиализом воду можно обессолить на 90%, обратным осмосом - на 98%. В установках обратного осмоса рабочее давление достигает 5-10 МПа, укладка мембран м. б. по типу фильтропресса, трубчатая, рулонная (спиральная и в виде полого волокна). См. также Мембранные процессы разделения.

Обезжелезивание. В подземных водах железо обычно находится в виде Fe(HCO3)2, в поверхностных водах - в виде тонкодисперсной взвеси гидроксида или входит в состав комплексных орг. в-в.

Подземные воды обезжелезивают упрощенной аэрацией (своб. падением воды с высоты 0,4-0,6 м) с послед. фильтрованием через слой зернистого материала. При этом на пов-сти зерен выделяется каталитич. пленка соединений Fe, интенсифицирующая обезжелезивание. Метод используют при общем содержании железа до 10 мг/л (в т.ч. Fе2 + - не менее 70%). Н2S - до 0,5 мг/л; рН не менее 6,8. В др. случаях и при наличии в воде агрессивного СО2 применяют аэрацию с помощью спец. аэраторов-градирен и фильтрование через слой зернистого материала. При значит. содержании Fe перед фильтрами иногда устанавливают отстойник, где происходят окисление Fe2+ в Fe3 + и коагуляция образующегося Fe(OH)3, к-рый задерживается на фильтрах.

Аэрация, совмещаемая с подщелачиванием воды Са(ОН)2 или Na2CO3 и фильтрованием, - универсальный метод, позволяющий удалять Fe во всех формах из подземных и поверхностных вод. Добавление р-ра щелочных реагентов в воду осуществляется непосредственно после аэратора. При этом методе из воды может выделяться Fe(OH)2 или FeCO3. В ряде случаев для комплексной очистки воды от Fe + и др. восстановителей, напр. H2S, в нее перед подачей в фильтры вводят окислители - Сl2 и КМnO4.

Обескремнивание. Содержание H2SiO3 и ее солей в прир. водах обычно колеблется от 1 до 50-60 мг/л. Высокие концентрации H2SiO3 и ее солей вследствие образования накипи недопустимы в воде, используемой для питания паровых котлов высокого давления, а также в нек-рых произ-вах (напр., целлюлозы, полупроводников, лек. препаратов и др.). При применении извести можно уменьшить содержание Si в воде до 0,3-0,5 мг/л (в расчете на SiO32-).

При обескремнивании воды солями Fe3+ расход их составляет ок. 2 мг Fe на 1 мг удаляемой коллоидной H2SiO3. Обескремнивание солями А1 лучше происходит при введении в воду NaAlO2 (10-15 мг/л на 1 мг SiO32-), чем A12(SO4)3. Обработкой Mg(OH)2 при нагр. воды до 40 °С удается снизить содержание Si до 1 мг/л, при нагр. до 100°С - до 0,25 мг/л.

При использовании обожженного доломита остаточное содержание SiO32- уменьшают до 2 мг/л при подогреве воды до 40 °С и до 0,2 мг/л - при подогреве до 98 °С. В случае введения в нагретую воду каустич. магнезита (10-15 мг на 1 мг удаляемой SiO32-) образовавшийся Mg(OH)2 сорбирует из воды H2SiO3, при этом содержание Si уменьшается до 1,0-1,5 мг/л. Почти полное Обескремнивание воды (до 0,02-0,05 мг/л) м. б. достигнуто путем ионного обмена.

Дегазация. Растворенные в воде газы (О2, СО2, H2S) повышают ее коррозионную активность и придают неприятный привкус и запах (H2S, CH4). На тепловых электростанциях дегазация - один из важных процессов, осуществляется гл. обр. пропусканием через воду пара. При этом в результате нагревания ее до т-ры кипения при атм. давлении или в вакууме р-римость газов в воде снижается до нуля. Аэрацию воды посредством ее разбрызгивания используют в осн. для устранения СО2 и H2S (O2 не удаляется). Как самостоят. метод для очистки воды от H2S аэрацию можно использовать только при малых его концентрациях; метод наиб. эффективен при рН < 5. Хим. методы применяют гл. обр. для обескислороживания воды, добавляя к ней разл. восстановители (SO2, Na2SO3, Na2S2O3, гидразин). Очисткой воды в биохим. реакторах с послед. фильтрованием через слой зернистого материала можно практически полностью устранить H2S, гидросульфиды и сернистые соединения.


===
Исп. литература для статьи «ВОДОПОДГОТОВКА»:
Кастальский А.А., МинцД.М., Подготовка воды для питьевого и промышленного водоснабжения, М., 1962; Минц Д.М., Теоретические основы технологии очистки воды, М., 1964; Апельцин Н.Э., Клячко В.А., Опреснение воды, М., 1968; Клячко В.А., Апельцин Н.Э., Очистка природных вод, М., 1971; Водоподготовка. Процессы и аппараты, под ред. О. И. Мартыновой, М., 1977; Кульский Л. А., Теоретические основы и технология кондиционирования воды, 3 изд., К., 1980; Абрамов Н. Н., Водоснабжение, 3 изд., М., 1981 С. В. Яковлев. В. А. Гладков.

Страница «ВОДОПОДГОТОВКА» подготовлена по материалам химической энциклопедии.

Куплю

19.04.2011 Белорусские рубли в Москве  Москва

18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

Продам

19.04.2011 Продаем скипидар  Нижний Новгород

19.04.2011 Продаем растворители  Нижний Новгород

19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

Rambler's Top100
Copyright © Newchemistry.ru 2006. All Rights Reserved