Учитывая массовое появление плесени и грибка на наружных ограждающих конструкциях зданий с внутренней стороны, что связано с не всегда достаточной квалификацией работников проектных организаций и специалистов строительных предприятий, важнейшим разделом стандарта является раздел по определению сопротивления паропроницаемости ограждающих конструкций. При этом устанавливаются следующие правила, что сопротивление паропроницанию R0 (м2ч Па/мг) ограждающих конструкций должно быть не менее наибольшего из следующих требуемых сопротивлений паропроницанию: a. требуемого сопротивления паропроницанию из условий недопустимости накопления влаги в ограждающих конструкциях за годовой период эксплуатации; b. требуемого сопротивления паропроницанию из условия ограничения влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами наружного воздуха. При этом плоскость возможной конденсации в однородной (однослойной) ограждающей конструкции располагается на расстоянии, равном 2/3 толщины конструкции от ее внутренней поверхности, а многослойной конструкции совпадает с наружной поверхностью утеплителя (кроме вентилируемых фасадов). Плоскость минимального увлажнения определяется по методике, базирующейся на использовании метода безразмерных характеристик, разработанной в 1989 г. Самарским государственным архитектурно-строительным университетом. Метод позволяет вычислить значение комплекса F (tK), величина которого зависит от температуры в плоскости возможной конденсации, для каждого слоя многослойной ограждающей конструкции. В стандарте значения комплекса F (tKI) сведены в таблицу при диапазоне температур в плоскости возможной конденсации от минус 30°С до плюс 20°С. Этот метод дает в руки проектировщиков прекрасный инструмент для определения плоскости максимального увлажнения строительной конструкции. Использование вышеуказанного метода, имеющего положительное практическое применение более 10 лет, позволит ликвидировать плесень и грибок на наружных стенах зданий и сооружений. С 1979 года проектные организации в расчетах использовали СНиП П-3-79 «Строительная теплотехника», в котором широко освещались теплотехнические показатели значительного количества строительных материалов и конструкций. В Приложении 3 к этому СНиПу можно было найти теплотехнические характеристики около 200 строительных материалов. Например, плотность материала, его удельная теплоемкость и коэффициент теплопроводности, расчетное массовое отношение влаги в материале при условиях эксплуатации «А» или «Б», расчетный коэффициент паропроницаемости. Имея теплотехнические характеристики материалов, не трудно было производить теплотехнические расчеты строительной конструкции. Однако с введением в действие с 1 октября 2003 г. СНиП 23-02-2003 «Тепловая защита зданий» взамен СНиП П-3-79 Приложение 3 исчезло, и проектировщик остался наедине с собой при необходимости использования в расчетах теплотехнических показателей разных строительных материалов. За 24 года произошли огромные изменения в производстве строительных материалов, особенно теплоизоляционных, а нормативный документ по теплотехническим характеристикам этих материалов отсутствовал. Проектировщикам приходилось использовать данные рекламных буклетов, которые явно не соответствовали реальным показателям. Этим и объясняется значительное количество неверных в инженерном плане решений, когда ссылки на значение коэффициентов теплопроводности, теплоусвоения паропроницаемости производились поданным рекламных буклетов. Особенно это было заметно по коэффициентам теплопроводности строительных материалов, которые в различных странах определяются при разных температурах: О°С, 10°С, 25°С. Не редко замечалось, когда в публикациях или на семинарах сравнивались значения коэффициентов теплопроводности строительных материалов и при этом «забывалось» указывать, что их значения получены при разных температурах. А ведь испытания теплоизоляционных строительных материалов при температурах 10°С и 25°С создает ошибку конечного результата примерно 0,015 Вт/м°С, т.е. около 30 % (!). В приложении 3 стандарта «Расчетные теплотехнические показатели строительных материалов и конструкций» внесены: • данные по новым долговечным крупноформатным пустотелым камням из пористой керамики и другим теплоизоляционным материалам на клинкерном вяжущем; • кладки стен из новых типов эффективного пустотелого керамического кирпича; • откорректированные значения коэффициентов теплопроводности силикатного кирпича, ячеистых бетонов, изготавливаемых по современным технологиям; • данные по теплопроводности кладок стен из блоков и камней, изготовленных из ячеистого бетона, пол и стирол бетон а и легкого керамзитобетона; • предложения по приведению в единую систему расчетных коэффициентов теплопроводности строительных материалов, определенных по разным методикам. На последнем необходимо остановиться отдельно, так как значения коэффициентов теплопроводности теплоизоляционных строительных материалов определяется по ГОСТ 7076, а наружных ограждающих конструкций по ГОСТ 26254. Для приведения в единую систему предложено при расчете сопротивления теплопередаче наружных ограждающих конструкций значения коэффициентов теплопроводности теплоизоляционных материалов, определенных по ГОСТ 7076 (например, минераловатные, пенополистирольные плиты) увеличивать в невентилируемых конструкциях на 30 %, в вентилируемых конструкциях на 20 %. В расчетах и практической деятельности необходимо учитывать, что: 1. Расчетные значения коэффициентов теплопроводности кладок из керамического кирпича и камня со сквозными пустотами соответствуют конструкциям стен, выполненным по технологиям, исключающим заполнение пустот раствором. 2. Коэффициенты теплопроводности кладок из пустотелого кирпича плотностью до 1200 кг/м3, изготовленных без выполнения мероприятий, исключающих заполнение пустот раствором плотностью 1800 кг/м3, следует принимать соответствующими увеличенной плотности кладки на 100 кг/м3. Из новых теплоизоляционных строительных материалов, широко исследованных в стандарте, кроме уже неоднократно отмеченных керамических стеновых материалов необходимо обратить внимание, на широкую гамму жестких пенополиуретанов, применяемых по региональным ТСН в различных областях России с 1995 года. На самом деле применение пенополиуретанов в России в строительной области началось в начале 70-х годов прошлого века. Значительным импульсом широкому использованию пенополиуретанов послужили шесть ТСН, выпущенных в 1995 году. |