новые химические технологии
АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    

НА ГЛАВНУЮ 

СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ТЕНДЕРЫ

ОБЗОРЫ РЫНКОВ

Исследование рынка КАСТ полипропиленовых пленок в России
Исследование рынка кормовых смесей в России
Исследование рынка кормовых белково-витаминных добавок для свиней в России
Исследование рынка кормовых белково-витаминных добавок для птиц в России
Исследование рынка ламп инфракрасного излучения в России
Исследование рынка ламп ультрафиолетового излучения в России
Исследование рынка защитных очков в России
Исследование рынка поливальных машин в России
Исследование рынка грузовых снегоболотоходов в России
Исследование рынка машин аварийно-технической службы в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English
  Экспорт статей (rss)

Базовая химия и нефтехимия

ХИМИЧЕСКИЕ СЕНСОРЫ

Использование принципа пьезоэффекта для формирования сигнала сенсора можно продемонстрировать на примере ХС на пары ртути. Известно, что между изменением частоты колебаний кварцевого пьезорезонатора и массой адсорбированного на его поверхности вещества существует линейная зависимость:

∆F=-2,3 106F2∆m/S, где F - резонансная частота колебаний пьезоэлемента, МГц; S- площадь электрода пьезоэлемента, см2; ∆m- масса адсорбированного на поверхности электрода вещества, г.

Если пластину кварца покрыть тончайшим слоем золота, которое легко образует амальгаму под воздействием паров ртути, то при измерении резонансной частоты такого устройства можно определить массу ртути на пластинах, а следовательно, и концентрацию ее паров. В случае возникновения необходимости определять другие компоненты в газовой фазе используют соответствующие химические реагенты, дающие селективный отклик на поверхности резонатора в присутствии этих веществ. Независимо от типа сенсоров к ним предъявляют высокие требования. Они должны обладать высокими селективностью и чувствительностью определения. Так, нижняя граница определяемых содержаний с использованием ЭС лежит в пределах 10-4-10-6 %, а в отдельных случаях - еще ниже.

БИОСЕНСОРЫ

В последнее десятилетие возникли новые контакты на первый взгляд между очень далекими областями: электроникой и биохимией. Их взаимное проникновение друг в друга создало новую сферу интересов науки – биоэлектронику. Первым шагом в этой области было возникновение новых устройств для анализа и переработки информации, получивших название биосенсоров. Биосенсоры рассматриваются как первое поколение биоэлектронных устройств.

Биосенсоры - это аналитические устройства, использующие биологические материалы для "узнавания" определенных молекул и выдающие информацию об их присутствии и количестве в виде электрического сигнала. Идея создания такого рода устройств существует уже около 30 лет. Впервые ее высказали, по-видимому, Кларк и Лионе в 1967 году [4]. Идея Кларка состояла в использовании ферментного электрода, то есть электрохимического датчика с иммобилизованным на его поверхности ферментом. За прошедшие десятилетия эта идея получила достаточное развитие. Создано и исследовано много систем, некоторые получили апробирование и промышленную реализацию.

Большинство биосенсоров ориентированы на анализ биологических жидкостей. Действительно, например, в крови находятся тысячи различных соединений. Задача заключается в том, чтобы быстро и эффективно (количественно) определить концентрацию нужного соединения, например глюкозы. Для людей, страдающих диабетом, это жизненно важный клинический анализ. Биосенсоры обеспечивают такую возможность. Любой биосенсор состоит из двух принципиальных функциональных элементов: биоселектируюшей мембраны, использующей различные биологические структуры, и физического преобразователя сигнала (трансдьюсера), трансформирующего концентрационный сигнал в электрический. Для считывания и записи информации используют электронные системы усиления и регистрации сигнала. В качестве биоселектируюшего материала используют все типы биологических структур: ферменты, антитела, рецепторы, нуклеиновые кислоты и даже живые клетки (рис. 5).

Трансдьюсерами могут быть электрохимические преобразователи (электроды), различного рода оптические преобразователи, гравитационные, калориметрические, резонансные системы. Все виды биоселектируюших элементов можно комбинировать с различными трансдьюсерами. Это создаст большое разнообразие различных типов биосенсоров. Наибольшее развитие получили ферментные и клеточные биосенсоры.

БИОСЕНСОРЫ НА ОСНОВЕ ФЕРМЕНТОВ

Ферментативный катализ обеспечивает биоселектирующими возможностями основную массу современных биосенсоров. Сопряжение ферментативно-каталитических и электрохимических реакции, происходящих на электропроводящих материалах, погруженных в раствор электролита, позволило разработать много биосенсоров для определения глюкозы, аминокислот, молочного сахара, пирувата, мочевины и других метаболитов.

Первая, предложенная Кларком, система основана на электроде, измеряющем в диффузионно-контролируемом режиме количество поглощенного кислорода. Было применено большое число оксидаз, использующих кислород для селективного окисле¬ния углеводов, аминокислот, органических кислот. Наиболее удобно проводить измерения на ферментных электродах в амперометрическом режиме, то есть измерять силу тока (поток электронов) через поверхность электрода. Сила тока как скорость реакции может быть однозначно связана с концентрацией измеряемого компонента. Простейший случай в конструировании ферментного биосенсора реализуется при условии, что либо субстрат, либо продукт ферментативной реакции электрохимически активны, то есть способны быстро и желательно обратимо окисляться или восстанавливаться на электроде при наложении на него соответствующего потенциала.

Соответственно электрохимическая детекция процесса может быть организована путем регистрации тока восстановления кислорода или перекиси водорода. Оба случая реализованы на практике. В амперометрических биосенсорах поток электронов через поверхность датчика линейно связан с концентрацией анализируемого вещества в растворе. При адсорбции ферментов на твердых поверхностях (металлы, керамика, полимеры) они, как правило, сохраняют свою структуру и каталитическую активность. Фермент в режиме амперометрического биосенсора проявляет электрокаталитическую активность, то есть ускоряет процесс обмена электронами между субстратом и электродом. Электрокаталитический транспорт электронов может быть осуществлен несколькими принципиально различными путями (рис. 6).

1.Перенос электронов протекает с помощью диффузионно-подвижного промежуточного низкомолекулярного переносчика электронов - медиатора. Медиатор должен быть достаточно специфическим субстратом фермента и быть электрохимически активным на электроде изданного материала. Медиаторный механизм транспорта электрона достаточно широко используется для проведения электрохимических ферментативных реакции.

2.Происходит прямой электрокаталитический перенос электронов между электродом и активным центром фермента. Например, в атмосфере кислорода в присутствии медьсодержащей оксидазы - лакказы из Poluporos versocolor, сорбированной на электродах из различных материалов, устанавливается потенциал, близкий к термодинамически равновесному потенциалу кислорода. При этом имеет место стадия переноса электронов из электрода на активный центр фермента. Описано и электрокаталитическое восстановление пероксида водорода с помошью иммобилизованной пероксидазы, протекающее по такому же механизму.

3. При включении ферментов в органические полупроводники (органические металлы) можно наблюдать перенос электронов между активным центром фермента и доменами в полупроводнике. Все эти механизмы транспорта электронов активно используются при конструировании биосенсоров.

Если медиаторный перенос электрона - достаточно традиционный путь сопряжения электрохимической и ферментативной реакций, то прямой перенос, в котором фермент играет роль истинного электрокатализатора, представляет большой интерес. Остановимся на этом более подробно.

Впервые явление биоэлектрокатализа с участием прямого переноса электронов электрод- активный центр фермента было обнаружено и исследовано при изучении реакции электрохимического восстановления кислорода с участием медьсодержащей оксидазы - лакказы [5, 6]. В классической электрохимии электровосстановление кислорода - одна из наиболее сложных проблем. Известно, что равновесный потенциал окисления - восстановления пары О2/Н2О, равный 1,23 В, устанавливается лишь на предварительно специально обработанной платине и в особо чистых растворах. В то же время известны ферменты, которые активно восстанавливают кислород по четырехэлектронному механизму до воды без промежуточного образования в растворе пероксида водорода. Лакказа является медьсодержащим ферментом, осуществляют им четырехэлектронное восстановление кислорода при использовании в качестве донора различных ароматических аминов и фенолов. В активный центр фермента входят четыре иона меди, осуществляющие координированное восстановление кислорода.

Известно, что электровосстановление кислорода в нейтральных или слабокислых растворах на угольных материалах протекает со значительным перенапряжением. При введении в систему лакказы в незначительных количествах (10-9 М) было замечено существенное смещение стационарного потенциала в область положительных значений и ускорение электровосстановления кислорода.

Наблюдаемые эффекты не зависят от природы электрода. Электрохимические измерения проводили на электродах из сажи, пирографита, стеклоуглерода или золота. Иммобилизацию лакказы осуществляли адсорбционным способом непосредственно на электрод. В присутствии кислорода и лакказы наблюдалось увеличение потенциала для всех исследуемыхв. Максимальное значение потенциала +1,207 B, близкое к равновесному потенциалу кислородного электрода, устанавликалось на электродах из сажи, которые предварительно были выдержаны в растворе лакказы (10-5 М) в течение суток. Адсорбция фермента на электродах из сажи практически необратима. После иммобилизации электрод сохраняет каталитические свойства при отсутствии лакказы в растворе. Ферментативная природа электрокатализа была доказана специфическим ингибированием электрокатализа фторид- и азид-ионами, инактивацией фермента прогреванием, сопоставлением рН- зависимости электрокаталитических эффектов и каталитической активности к реакции окисления феррицианид-иона кислородом.


1 | 2 | 3 | 4 | 5
Версия для печати | Отправить |  Сделать стартовой |  Добавить в избранное
Статьи по теме

Куплю

19.04.2011 Белорусские рубли в Москве  Москва

18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

Продам

19.04.2011 Продаем скипидар  Нижний Новгород

19.04.2011 Продаем растворители  Нижний Новгород

19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

Материалы раздела

ЭНЕРГОЭФФЕКТИВНОСТЬ: Детский сад категории «А»
ТРАНСГЕННЫЕ СЕЛЬХОЗКУЛЬТУРЫ
МУЛЬТИЗОНАЛЬНЫЕ СИСТЕМЫ GREE GMV,
РАБОТЫ ПО СОЗДАНИЮ «ПЛАЩА-НЕВИДИМКИ»
ГУЛЬКЕВИЧСКИЙ МАЛЬТОДЕКСТРИН
БИОЛОГИЧЕСКАЯ ОБРАБОТКА СЕМЯН: новые возможности BASF
СИСТЕМА ТЕПЛОИЗОЛЯЦИИ ФАСАДОВ CAPAROL «CAPATECT CARBON»
«ДЕРЕВЯННЫЙ» САЙДИНГ WOODSTOCK
БЕЛОРУССКИЕ КРАХМАЛЬНЫЕ ТЕХНОЛОГИИ
ИЗОЛЯЦИОННЫЕ ПЛИТЫ GUTEX THERMOFIBRE
ПОТРЕБЛЕНИЕ МЯСА УСКОРЯЕТ ИЗМЕНЕНИЕ КЛИМАТА
РЕАКТОР СРЕДНЕТЕМПЕРАТУРНОЙ КОНВЕРСИИ ДЛЯ ТАНЕКО
ГНС о МОДЕРНИЗАЦИИ ЭП-300 И УСТАНОВКИ ГИДРООЧИСТКИ
НОВЫЕ ЦИСТЕРНЫ ДЛЯ ПЕРЕВОЗКИ ГИДРОКСИДА НАТРИЯ
БАНАНЫ И МАНИОКА ЗАМЕНЯТ ПШЕНИЦУ И РИС
ИСКУССТВЕННОЕ СОЛНЦЕ ДЛЯ ТЕПЛИЧНЫХ РАСТЕНИЙ
ПРОЕКТ СОЗДАНИЯ ЭКЗОСКЕЛЕТА
БУДУЩИЕ ВОДОРОДНЫЕ АВТОМОБИЛИ
ЭЛЕКТРИЧЕСКИЕ ТРУСЫ
НОВЫЕ ОТЕЧЕСТВЕННЫЕ ЭНДОПРОТЕЗЫ ИЗ НАНОКЕРАМИКА
ФАСАДНЫЕ ТЕНДЕНЦИИ в ИНДИВИДУАЛЬНОМ СТРОИТЕЛЬСТВЕ
ЕВРОПА ПЕРЕВОДИТ КОНДИЦИОНЕРЫ НА ПРИРОДНЫЙ ХЛАДАГЕНТ
КУЗОВ ИЗ МАГНИЕВОГО СПЛАВА
ПРОРЫВ В ОБЛАСТИ ОПТИЧЕСКОЙ ПЕЧАТИ
МОДЕРНИЗАЦИЯ АГРЕГАТА АММИАКА на ЧЕРКАССКОМ «АЗОТЕ»
МОДЕРНИЗАЦИЯ ХЛОРНОГО ПРОИЗВОДСТВА на КЧХК
НОВЫЕ АЗОТНО-СЕРНИСТЫЕ УДОБРЕНИЯ УРАЛХИМА
КАЛЬЦИЙФОСФАТНЫЙ ЦЕМЕНТ ДЛЯ ХИРУРГИИ
РЕАГЕНТЫ на ОСНОВЕ БИШОФИТА
НОВОЕ ЖБИ-ПРОИЗВОДСТВО
НАНОПОКРЫТИЯ «ПЛАКАРТА»: результаты испытаний
МЕМБРАНЫ для ГЕНЕРАТОРА ВОДОРОДА
IT-СИСТЕМА для УВЕЛИЧЕНИЯ ГЛУБИНЫ ПЕРЕРАБОТКИ
ТЕХНОЛОГИЯ NEWCHEM для ПОЛУЧЕНИЯ ГЛИНОЗЕМА
НОВЫЙ СВЕТОДИОДНЫЙ МОДУЛЬ «ОПТОГАНА»
СТАЛЬ С ПОКРЫТИЕМ AGNETA
МОДЕРНИЗАЦИЯ СИСТЕМ ОТОПЛЕНИЯ ИСТОРИЧЕСКИХ ЗДАНИЙ
СЭНДВИЧ-ПАНЕЛИ STERILIUM
ПЕРЕХОД К ГАЗОМОТОРНОМУ ТОПЛИВУ
НОВЫЕ СРЕДСТВА ЗАЩИТЫ РАСТЕНИЙ BASF
«Металл Профиль» предлагает сгладить углы
МАСЛА ЛУКОЙЛ НА ЗАВОДАХ REXAM
ДОМ С НЕЙТРАЛЬНЫМ ЭНЕРГОБАЛАНСОМ
СЭНДВИЧ-ПАНЕЛИ SECRET FIX
СИСТЕМЫ ОПАЛУБКИ PERI

>>Все статьи

Rambler's Top100 Рейтинг@Mail.ru
Copyright © Newchemistry.ru 2006. All Rights Reserved