новые химические технологии
АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    

НА ГЛАВНУЮ 

СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ТЕНДЕРЫ

ОБЗОРЫ РЫНКОВ

Анализ рынка сывороточных белков в России
Рынок кормовых отходов кукурузы в России
Рынок рынка крахмала из восковидной кукурузы в России
Рынок восковидной кукурузы в России
Рынок силиконовых герметиков в России
Рынок синтетических каучуков в России
Рынок силиконовых ЛКМ в России
Рынок силиконовых эмульсий в России
Рынок цитрата кальция в России
Анализ рынка трис (гидроксиметил) аминометана в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English
  Экспорт статей (rss)

НОВЫЕ ХИМИЧЕСКИЕ ТЕХНОЛОГИИ ДЛЯ СВЕРХКРИТИЧЕСКИХ СРЕД

Декофеинизация кофе осуществляется похожим и более простым способом. Первый патент по использованию СК-CO2 для декофеинизации кофе относится к 1974 году. В настоящее время декофеинизация кофе является мощным крупномасштабным процессом, освоенным в США, Великобритании, Германии и других странах. Для этого процесса используют СК-CO2, имеется несколько технологических схем. Обычно рабочее давление реакторов-экстракторов составляет 150-300 атм, а рабочие температуры 30-60?С. При этом размол кофейных зерен совершенно не нужен. При низкой вязкости СК-CO2 экстракция вполне эффективно протекает из целых зерен. Нужно сказать, что поскольку в реальном технологическом процессе равновесная концентрация кофеина в СК-CO2 получается не очень высокой, то для извлечения кофеина из раствора приходится не просто понижать давление, а полностью переходить через критическую точку, что технически достаточно просто.

Ценным для практики оказался тот факт, что растворимость как жидких, так и твердых веществ в СК-средах является функцией давления: чем выше давление, тем выше растворимость твердых веществ в СК-средах. В пределах сверхкритического состояния растворителя (СК-среды) эта зависимость меняется плавно. Однако при снижении давления, сопровождающегося переходом через СК-точку, растворимость твердых веществ падает практически до нуля. Это и понятно, так как при этом мы из сверхкритического состояния среды переходим к классическому газу. А газы, как известно, твердые вещества не растворяют. На этом изменении растворимости твердых веществ в зависимости от давлении построены, например, технологические схемы по фракционированию полимеров. Так, "Phases Corporation" (USA) использовала сверхкритический пропан для растворения полиэтилена высокого давления и получила его отдельные фракции, различающиеся молекулярной массой и кристалличностью. Расчеты показывают, что такая технология удобна и вполне рентабельна для получения специальных сортов полимеров.

Основными промышленно используемыми СК-экстрагентами сегодня являются CO2 и пропан, значительно реже используется C2H4 , C2H6 и, наконец, H2O. Следует еще раз обратить внимание, что все эти вещества являются экологически либо полностью безвредными, либо малоопасными.

СК-среда может быть использована как антирастворитель, то есть осадитель. Та же американская фирма инжектировала растворы полимеров в толуол в среде СК-CO2 . Поскольку растворение самого толуола в СК-CO2 происходит практически мгновенно, то в результате нерастворимый в СК-CO2 полимер тут же осаждается в виде мелкодисперсного порошка, недоступного другими методами. Изменение давления СК-CO2 меняет кинетику смешивания веществ, а значит, и морфологию осаждаемого полимера. СК-CO2 по частоте употребления в процессах экстракции превосходит все остальные растворители, вместе взятые. Это связано с его дешевизной, простотой аппаратуры и потрясающей химической инертностью.

Обратным процессу экстракции является процесс импрегнации, то есть внедрения новых веществ в различные материалы. Уже сейчас импрегнация используется в целях окрашивания полиэфирного текстиля. Окрашивание традиционно происходит в воде, что вызывает серьезные проблемы с очисткой отработанной воды. При использовании сверхкритического окрашивания вода не используется вовсе, однако пока еще существует проблема равномерности окрашивания, приемлемая для использования метода в промышленности. Этот метод дает интересную возможность окрашивать различные типы синтетических материалов одновременно. Например, пластиковые зубцы и тканевую подкладку застежки-молнии.

С помощью сверхкритической импрегнации фторацетилацетоната меди в приповерхностную область тормозных дисков из полиакрилата в СК-CO2 с последующим терморазложением хелата и окислением выделившегося металла на воздухе были получены полимерные образцы, износостойкость поверхности которых в несколько (более пяти) раз превышала исходную.

Необходимо хотя бы вкратце упомянуть еще об одном важном применении СК-сред, эксплуатирующем их уникальные физические свойства, - сверхкритическую хроматографию. Различные варианты газовой и жидкостной хроматографии давно и широко применяются в современной аналитической химии. Введение в практику сверхкритической хроматографии (в начале 80-х годов) позволило обеспечить одновременно высокую селективность (присущую газовой хроматографии) и возможность анализа нелетучих образцов (как в жидкостной хроматографии).

Сверхкритические среды в химических реакциях

Вторым направлением применения сверхкритических жидкостей является их использование в качестве среды непосредственно в ходе химических реакций. Одно из самых весомых преимуществ СК-растворителей перед традиционными заключается в их способности хорошо растворять в себе газы, прежде всего H2 и N2 . Это связано со значительным свободным объемом СК-среды. Реально удается достигать концентраций H2 и N2 , в 10-20 раз более высоких, чем в традиционных растворителях. Хотя удивляться этому факту не стоит. Достаточно вспомнить дуалистическую природу сверхкритического состояния - это одновременно и жидкость и газ. А разные газы, как известно, обычно полностью смешиваются друг с другом. Иначе говоря, сверхкритическая среда имеет большой свободный объем, который может быть заполнен молекулами газа. Соответственно резко возрастают скорости реакций. В настоящее время наибольшее практическое значение имеет высокая растворимость H2 в СК-средах, поскольку полезные процессы гидрирования очень распространены. Так, японская корпорация "Research Development Corporation" разработала эффективный процесс каталитического гидрирования CO2 в СК-CO2 , приводящий к образованию муравьиной кислоты:

H2 + CO2 HCOOH

Процесс протекает очень быстро и чисто.

Для промышленности исключительно важно то, что резкое ускорение реакций в СК-средах, обусловленное высокими концентрациями реагентов, низкой вязкостью и высокой диффузионной способностью СК-растворителей, позволяет соответственно сократить время контакта реагентов. В технологическом плане это дает возможность заменить статические замкнутые реакторы на более предпочтительные проточные, причем принципиально меньшего размера, более дешевые и безопасные. Так, компании "Hoffmann La Roche", производящей витамины и другие фармацевтические препараты, удалось заменить при производстве полупродуктов витаминов статический реактор объемом 10 000 л (103 м) на динамический сверхкритический реактор большей производительности объемом всего 40 л.

От реакции гидрирования, и в том числе гидрирования CO2, перейдем к превращениям самой СК-CO2 . Вообще говоря, такие реакции весьма немногочисленны, так как молекула CO2 неполярна, высокоустойчива и соответственно относится к малореакционноспособным соединениям.

Эффективная темплатная реакция была найдена в Max-Plank Institute в Германии - это темплатный синтез ценного циклического соединения взаимодействием двух ацетиленовых молекул с CO2:

 

1 | 2 | 3
Версия для печати | Отправить |  Сделать стартовой |  Добавить в избранное
Статьи по теме

Куплю

19.04.2011 Белорусские рубли в Москве  Москва

18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

Продам

19.04.2011 Продаем скипидар  Нижний Новгород

19.04.2011 Продаем растворители  Нижний Новгород

19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

Материалы раздела

ПЭТФ 2008: отчет о конференции
ФОРУМ ПО ВТОРИЧНОЙ ПЕРЕРАБОТКЕ ПЭТФ 2008
ПОЛИЭТИЛЕН 2008: отчет о конференции
ПОЛИПРОПИЛЕН 2008: отчет о конференции
ФОСФОРНЫЕ, СЛОЖНЫЕ И КАЛИЙНЫЕ УДОБРЕНИЯ 2008: отчет о конференции
БЕНЗИНЫ 2008: отчет о конференции
ПОЛИМЕРНЫЕ ТРУБЫ 2008: отчет о конференции
КАБЕЛЬНЫЕ ПЛАСТИКАТЫ 2008: отчет о конференции
КАУСТИЧЕСКАЯ СОДА 2008: отчет о конференции
ПОЛИМЕРНЫЕ ПЛЁНКИ 2008: отчет о конференции
ПОЛИУРЕТАНЫ 2008: отчет о конференции
«ПОЛИМЕРНЫЕ ПЛЁНКИ 2008»
Особенности проведения исследований на рынках химической продукции
Совместный бизнес с АКПР
АКПР: Четыре схемы анализа B-2-B рынков
Rambler's Top100 Рейтинг@Mail.ru
Copyright © Newchemistry.ru 2006. All Rights Reserved