новые химические технологии
АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    

НА ГЛАВНУЮ 

СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ТЕНДЕРЫ

ОБЗОРЫ РЫНКОВ

Анализ рынка сывороточных белков в России
Рынок кормовых отходов кукурузы в России
Рынок рынка крахмала из восковидной кукурузы в России
Рынок восковидной кукурузы в России
Рынок силиконовых герметиков в России
Рынок синтетических каучуков в России
Рынок силиконовых ЛКМ в России
Рынок силиконовых эмульсий в России
Рынок цитрата кальция в России
Анализ рынка трис (гидроксиметил) аминометана в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English
  Экспорт статей (rss)

Базовая химия и нефтехимия

ДОСТИЖЕНИЯ В ОБЛАСТИ СОЗДАНИЯ ВОДОСТОЙКИХ ГИПСОВЫХ ВЯЖУЩИХ

Развитие исследований водостойких гипсовых вяжущих

Продолжающиеся по настоящее время исследования ГЦП вяжущих направлены на:

• разработку теоретических основ получения ВГВ повышенной прочности;
• создание на их основе различных бетонов и их технологий;
• изучение прочностных и деформативных свойств ГЦП камня и бетонов при кратковременных и длительных нагрузках, а также поведения арматуры в них;
• исследование долговечности таких бетонов и изделий на их основе в натурных и лабораторных условиях.

Важное место в исследованиях занимало изучение процесса твердения ГЦП вяжущих и формирования структуры затвердевшего вяжущего и ее влияния на прочностные, деформативные свойства и долговечность [5, 6 и др.]. Были установлены основные причины, обусловливающие отличие физико-механических свойств неводостойких ГВ и ГЦП вяжущих. Основы этих причин лежат в своеобразии процесса твердения и формирования структуры ГЦП вяжущих. Показано, что при их твердении образуется принципиально новая структура, отличная от структуры затвердевшего ГВ. В частности, в затвердевшем ГЦПВ изменяется состав и характер новообразований, включающий не только кристаллы двугидрата сульфата кальция, но и субмикрокристаллические низкоосновные гидросиликаты кальция и другие малорастворимые гидратные соединения, сходные по составу с продуктами гидратации портландцемента. При этом доказано, что их количеством и качеством, также как и структурой можно управлять различными приемами.

По А.В. Волженскому и А.В. Ферронской [5, 6] механизм твердения ГЦПВ представляется следующим образом.

Твердение ГЦПВ и ГШЦПВ - результат сложных физико-химических процессов, в результате которых образуются новые гидратные вещества (по сравнению с гипсовым вяжущим), обусловливающие основные свойства вяжущих и приближающие их к портландцементу.

При затворении водой ГЦПВ происходит гидра тация полуводного гипсового вяжущего и схватывание, а выде ляющиеся кристаллы двугидрата сульфата кальция создают каркас первоначаль ной структуры. Одновременно начинается гидратация минералов цементного клинкера, сопровождающаяся выделением гидроксида кальция. Активная минеральная добавка (трепел, опока, шлак и др.), обязательно присутствующая в этих вяжущих, регулирует щелочность среды. Связывание гидроксида кальция этими добавками приводит к снижению концентрации Са(ОН)2 в жидкой фазе до такого уровня, при котором высокоосновные гидроалюминаты кальция 4 СаО-АlОз •13 Н2О и 3 СаО•Аl2О3 •6 Н2О становятся неста бильными. Это способствует быстрому связыванию глино зема в скрытокристаллический гидросульфоалюминат кальция трехсульфатной формы. В дальнейшем происходит разложение трехсульфатного гидросульфоалюмината кальция, неустойчивого в средах с низ кой концентрацией Са(ОН)2. Последующее твердение ГЦПВ связано, с одной стороны, нестабильностью эттрингита, а с другой, — образованием дополнительного количества низкоосновных гидросиликатов типа CSH ( B ). Следует отметить, что односульфатная форма гидросульфоалюмината кальция не обнаружена. Очевидно, образующиеся при разложении эттрингита новообразования представлены CaSO4 • 2Н2O, низкоосновными гидросиликатами и гидроалюминатами кальция.

Силикаты кальция клинкера (алит и белит) частично гидролизуются и, гидратируясь, дают гелевидные гидросиликаты кальция со средним составом CaO • SiO2 • nH2O. Такие же гидросиликаты кальция возникают в результате взаимодействия гидроксида кальция с активной минеральной добавкой. Образующиеся новообразования являются связкой, цементирующей крупные кристаллы дигидрата, которые образуются на первой стадии твердения, и защищающей их от взаимодействия с водой. За счет этого водостойкость ГЦПВ выше водостойкости гипсовых вяжущих. Защитное влияние новообразований на гипсовое вяжущее проявляется при содержании портландцемента в смешанном вяжущем 15-20 % и усиливается по мере увеличения его содержания в ГЦПВ.

По мнению Розенберг Т.И., Ратинова В.Б. и др. механизм твердения и деструкции ГЦП вяжущих происходит следующим образом [7]:

• в процессе твердения ГЦП систем возникает не моносульфатная, а трехсульфатная форма гидросульфоалюмината кальция;
• скорость образования и количество эттрингита при прочих равных условиях определяется концентрацией гидроксида кальция в системе;
• при дальнейшем твердении за счет прорыва фазоразделяющей пленки процессы взаимодействия компонентов возобновляются; если структура материала уже не податлива, то она может разрушиться в результате кристаллохимического давления выкристаллизовывающегося эттрингита.

Согласно рассмотренному механизму разрушение ГЦПкамня обусловливается не только наличием и количеством эттрингита, но и временем и скоростью его образования. Аналогичной точки зрения на механизм твердения и деструкции ГЦП камня придерживаются Книгина Г.И. и Тимофеева Л.Г.[8]. В работе [ 9 ] разрушение гипсоцементных систем объясняется образованием не только эттрингита, но и таумасита, являющегося продуктом взаимодействия эттрингита с углекислотой воздуха. Нашими исследованиями присутствие таумасита даже в образцах 10-летнего возраста не обнаружено.

Исследования показали также, что различные модификации сульфата кальция не вносят существенного изменения в характер новообразований, но влияют на скорость гидратации вяжущего и условия кристаллизации новообразований, что, в конечном счете, отражается на прочности вяжущего.

В настоящее время наибольшее применение получили ГЦПВ примерно следующего состава, % по массе: гипсовое вяжущее 75-50, портландцемент 15-25, пуццолановая добавка 10-25. В качестве пуццолановой добавки в нашей стране обычно используют трепел, диатомит, опоки, активные золы, гранулированные доменные шлаки и т.д. В других странах для этих целей применяют золу-унос, образующуюся при сгорании бурых углей, трасы и т.п.

Последующие исследования по получению ВГВ, как у нас в стране, так и за рубежом, основывались на теоретических положениях, изложенных выше.

Опыт применения в строительстве изделий из бетонов на основе ГЦП вяжущих и результаты длительных натурных и лабораторных исследований показали их удовлетворительную эксплуатационную стойкость в разных климатических районах и температурно-влажностных условиях. В то же время, они выявили ряд недостатков, сдерживающих их широкое применение в строительстве.

Для устранения выявленных недостатков работы выполнялись в следующих направлениях:

• модифицирование вяжущих и бетонов химическими добавками, в том числе полифункциональными, позволяющими регулировать некоторые свойства, в частности, сроки схватывания и твердения, снижать водопотребность, повышать долговечность;
• улучшение свойств ГЦПВ и качества изделий из бетонов на их основе за счет дисперсного армирования неорганическими и органическими волокнами;
• создание нового поколения эффективных гипсовых материалов и изделий и их технологий, в том числе, суперлегких тепло- и звукоизоляционных, отделочных, защитных.

В результате выполненных исследований значительно повысилось качество бетонов на ГЦП вяжущих.

Дальнейшие исследования по повышению эффективности ГВ позволили получить ВГВ нового поколения - гидравлические композиционные гипсовые вяжущие (КГВ) и бетоны на их основе [10-19 и др.].

Технология их производства основана на достижениях в области механохимической активации материалов с учетом особенностей твердения гипсоцементно-кремнеземистых вяжущих, позволяющих получать качественно новый уровень свойств материалов.

Новые вяжущие представляют собой гомогенную активированную смесь любого гипсового вяжущего с гидравлическим компонентом, получаемым предварительно совместной механохимической активацией портландцемента, кремнеземистой добавки и суперпластификатора. Этот гидравлический компонент является органо-минеральным модификатором (ОММ) гипсовых вяжущих и может быть приготовлен заранее и использован по мере необходимости. ОММ содействует повышению скорости и степени гидратации портландцемента в КГВ и увеличению активности кремнеземистых компонентов, повышению реакционной способности трехкальциевого алюмината и других минералов, что способствует образованию эттрингита в начальный период твердения. В дальнейшем исчезают условия для его образования ввиду расходования алюминатных составляющих клинкера и резкого понижения концентрации гидроксида кальция за счет его связывания активированным кремнеземом. Это способствует образованию нового типа структуры, обеспечивающей высокие показатели свойств разработанных вяжущих, повышение прочности и долговечности.

Для получения КГВ могут использоваться любые модификации гипсовых вяжущих (бета- и альфа-полугидрат сульфата кальция, ангидрит, эстрих-гипс) или их сочетания, кремнеземистая добавка, в качестве которой можно использовать золу-унос, керамическую пыль, отходы производства кирпича и других керамических изделий, стеклянный бой, мелкий кварцевый песок, микрокремнезем, кремнегель, отработанный силикагель и т.п. материалы; портландцемент любой разновидности, в том числе сульфатостойкий, марок 400…500; сухая пластифицирующая добавка (суперпластификатор С-3, лигносульфонаты технические и др.). Кроме того, для регулирования сроков схватывания можно вводить винную или виннокаменную кислоты, цитраты некоторых солей и другие замедлители схватывания.

Производство КГВ включает следующие этапы:

• дозирование и совместный помол портландцемента, кремнеземистой добавки и пластификатора;
• перемешивание гипсового вяжущего с полученным ОММ и с дополнительным помолом или без него.

Производство может быть организовано на гипсовых заводах, в цехах по производству сухих строительных смесей или на специально выделенных участках при реконструкции предприятий, в т.ч. на заводах сборного железобетона.

Вяжущие, получаемые по данной технологии, и бетоны на их основе характеризуются новым уровнем технологических и технических свойств по сравнению с ранее известными водостойкими гипсовыми вяжущими и бетонами и отличаются улучшенными эксплуатационными свойствами.


 

1 | 2 | 3 | 4
Версия для печати | Отправить |  Сделать стартовой |  Добавить в избранное
Статьи по теме

Куплю

19.04.2011 Белорусские рубли в Москве  Москва

18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

Продам

19.04.2011 Продаем скипидар  Нижний Новгород

19.04.2011 Продаем растворители  Нижний Новгород

19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

Материалы раздела

ЭНЕРГОЭФФЕКТИВНОСТЬ: Детский сад категории «А»
ТРАНСГЕННЫЕ СЕЛЬХОЗКУЛЬТУРЫ
МУЛЬТИЗОНАЛЬНЫЕ СИСТЕМЫ GREE GMV,
РАБОТЫ ПО СОЗДАНИЮ «ПЛАЩА-НЕВИДИМКИ»
ГУЛЬКЕВИЧСКИЙ МАЛЬТОДЕКСТРИН
БИОЛОГИЧЕСКАЯ ОБРАБОТКА СЕМЯН: новые возможности BASF
СИСТЕМА ТЕПЛОИЗОЛЯЦИИ ФАСАДОВ CAPAROL «CAPATECT CARBON»
«ДЕРЕВЯННЫЙ» САЙДИНГ WOODSTOCK
БЕЛОРУССКИЕ КРАХМАЛЬНЫЕ ТЕХНОЛОГИИ
ИЗОЛЯЦИОННЫЕ ПЛИТЫ GUTEX THERMOFIBRE
ПОТРЕБЛЕНИЕ МЯСА УСКОРЯЕТ ИЗМЕНЕНИЕ КЛИМАТА
РЕАКТОР СРЕДНЕТЕМПЕРАТУРНОЙ КОНВЕРСИИ ДЛЯ ТАНЕКО
ГНС о МОДЕРНИЗАЦИИ ЭП-300 И УСТАНОВКИ ГИДРООЧИСТКИ
НОВЫЕ ЦИСТЕРНЫ ДЛЯ ПЕРЕВОЗКИ ГИДРОКСИДА НАТРИЯ
БАНАНЫ И МАНИОКА ЗАМЕНЯТ ПШЕНИЦУ И РИС
ИСКУССТВЕННОЕ СОЛНЦЕ ДЛЯ ТЕПЛИЧНЫХ РАСТЕНИЙ
ПРОЕКТ СОЗДАНИЯ ЭКЗОСКЕЛЕТА
БУДУЩИЕ ВОДОРОДНЫЕ АВТОМОБИЛИ
ЭЛЕКТРИЧЕСКИЕ ТРУСЫ
НОВЫЕ ОТЕЧЕСТВЕННЫЕ ЭНДОПРОТЕЗЫ ИЗ НАНОКЕРАМИКА
ФАСАДНЫЕ ТЕНДЕНЦИИ в ИНДИВИДУАЛЬНОМ СТРОИТЕЛЬСТВЕ
ЕВРОПА ПЕРЕВОДИТ КОНДИЦИОНЕРЫ НА ПРИРОДНЫЙ ХЛАДАГЕНТ
КУЗОВ ИЗ МАГНИЕВОГО СПЛАВА
ПРОРЫВ В ОБЛАСТИ ОПТИЧЕСКОЙ ПЕЧАТИ
МОДЕРНИЗАЦИЯ АГРЕГАТА АММИАКА на ЧЕРКАССКОМ «АЗОТЕ»
МОДЕРНИЗАЦИЯ ХЛОРНОГО ПРОИЗВОДСТВА на КЧХК
НОВЫЕ АЗОТНО-СЕРНИСТЫЕ УДОБРЕНИЯ УРАЛХИМА
КАЛЬЦИЙФОСФАТНЫЙ ЦЕМЕНТ ДЛЯ ХИРУРГИИ
РЕАГЕНТЫ на ОСНОВЕ БИШОФИТА
НОВОЕ ЖБИ-ПРОИЗВОДСТВО
НАНОПОКРЫТИЯ «ПЛАКАРТА»: результаты испытаний
МЕМБРАНЫ для ГЕНЕРАТОРА ВОДОРОДА
IT-СИСТЕМА для УВЕЛИЧЕНИЯ ГЛУБИНЫ ПЕРЕРАБОТКИ
ТЕХНОЛОГИЯ NEWCHEM для ПОЛУЧЕНИЯ ГЛИНОЗЕМА
НОВЫЙ СВЕТОДИОДНЫЙ МОДУЛЬ «ОПТОГАНА»
СТАЛЬ С ПОКРЫТИЕМ AGNETA
МОДЕРНИЗАЦИЯ СИСТЕМ ОТОПЛЕНИЯ ИСТОРИЧЕСКИХ ЗДАНИЙ
СЭНДВИЧ-ПАНЕЛИ STERILIUM
ПЕРЕХОД К ГАЗОМОТОРНОМУ ТОПЛИВУ
НОВЫЕ СРЕДСТВА ЗАЩИТЫ РАСТЕНИЙ BASF
«Металл Профиль» предлагает сгладить углы
МАСЛА ЛУКОЙЛ НА ЗАВОДАХ REXAM
ДОМ С НЕЙТРАЛЬНЫМ ЭНЕРГОБАЛАНСОМ
СЭНДВИЧ-ПАНЕЛИ SECRET FIX
СИСТЕМЫ ОПАЛУБКИ PERI

>>Все статьи

Rambler's Top100 Рейтинг@Mail.ru
Copyright © Newchemistry.ru 2006. All Rights Reserved