БЕЛИТОВЫЙ ЦЕМЕНТ НА ОСНОВЕ ОТХОДОВ МОКРОЙ МАГНИТНОЙ СЕПАРАЦИИ


В последние годы все больший интерес вызывают цементы с пониженным коэффициентом насыщения, содержащие вместо белита двухкальциевый силикаты. В данной работе излагаются результаты исследований по получению белитового цемента с повышенной гидратационной активностью при твердении путем обжига двухкомпонентной сырьевой смеси.


 

В последние годы все больший интерес вызывают цементы с пониженным коэффициентом насыщения, содержащие вместо белита такие минералы как  α и  α двухкальциевый силикаты [1,2,3]. Установлено, что эти цементы благодаря повышенной гидратационной активности  α двухкальциевого силиката по сравнению с белитом отличаются достаточно высокой маркой. Эти цементы привлекают внимание благодаря тому, что их получение позволяет снизить расход топлива на обжиг. Известно множество разновидностей цементов на основе клинкеров с низким коэффициентом насыщения [4]. Большинство из них получают из сырьевых смесей, которые отличаются от традиционных в основном меньшим содержанием карбонатного компонента.

В данной работе излагаются результаты исследований авторов по получению белитового цемента с повышенной гидратационной активностью при твердении путем обжига двухкомпонентной сырьевой смеси. При этом в качестве силикатного компонента предлагается использовать отходы мокрой магнитной сепарации (м.м.с.) горнорудных предприятий, в частности Курской магнитной аномалии. При этом технология производства такого цемента значительно проще и менее энергоемка, чем традиционная. В качестве карбонатного компонента использовали мел, который является вскрышенной породой при разработке и добыче железистых кварцитов Стойленского месторождения и используемых Старооскольским цементным заводом и отходы м.м.с. Михайловского ГОКа. Химический состав указанных материалов приведен в таблице 1.<>


В таблице 2 приведены сведения о среднем гранулометрическом составе отходов м.м.с. магнетитовых кварцитов.

Как видно из приведенных данных, силикатный компонент не требует дополнительного помола.
Была проведена серия обжигов сырьевых смесей с различным коэффициентом насыщения (КН=0,8-0,86). Исследования показали, что наибольший интерес представляет клинкер с КН=0,82, полученный при обжиге в лабораторной силитовой печи при температуре 1400-1450 0С с продолжительностью выдержки при максимальной температуре 30 минут. При этом сырьевая смесь состояла из 74,6% мела и 25,4% отходов м.м.с. Полученный клинкер содержал не более 0,4% свободной извести и показал отсутствие склонности к силикатному распаду. Рентгенограмма клинкера приведена на рисунке 1.


Как видно из рисунка 2 кинетика твердения полученного вяжущего характерна для низкоосновных цементов и отличается несколько замедленным набором прочности в первые 1-3 сутки. В дальнейшем, однако, наблюдается достаточно интенсивное твердение образцов и через 28 суток предел их прочности достигает 68 МПа при сжатии и 18 МПа при изгибе. Это соответствует классу цемента не ниже 32,5 МПа (По ГОСТ 31108-2003).

Цемент этого типа может представлять большой интерес для изготовления бетонных и железобетонных конструкций, эксплуатирующихся в агрессивной среде, особенно при высоком содержании сульфат-ионов. Кроме того, в связи с низким содержанием трехкальциевого алюмината и алита, строительные изделия на его основе будут отличаться повышенной деформативностью и стойкостью к повышенным динамическим нагрузкам, что позволяет рекомендовать его для строительства автомобильных дорог. Известно, что цементы для крепления глубоких и сверхглубоких нефтяных и газовых скважин должны отличаться минимальным содержанием указанных выше минералов. Этому требованию отвечает данное вяжущее.

В связи с этим он представляет интерес как тампонажный цемент для горячих скважин, аналогичный цементу класса F по классификации Американского нефтяного института.


Список литературы:

1. Бойкова А.И. Цементные минералы сложного состава // Химия силикатов и оксидов. - Л.: Наука, 1982. - С.259-273.
2. Шубин В.И., Хныкин Ю.Ф., Рязин В.П. Активизация белитовой фазы // Труды НИИцемента. - 1983. - Вып. 77. - С.16-21.
3. Судакас Л.Г., Крапля А.Ф., Соколова Н.А. Об активных низкоосновных клинкерах // Тезисы докладов 6 Всесоюзного совещания по высокотемпературной химии оксидов и силикатов. - Л.: Наука, 1988. - 135с.
4. Мануйлов В.Е. Энергосбережение в технологии цемента при комплексном использовании техногенных материалов Уральского региона // Диссертация на соискание ученой степени кандидата технических наук. - Белгород: 2001. - 176с.
5. Бутт Ю.М., Тимашев В.В. Практикум по химической технологии вяжущих материалов. - М.: Высшая школа, 1973. - 534с.

Рахимбаев Ш.М., д-р техн. наук, проф.,
Яшуркаева Л.И., канд. техн. наук, доц.,
Белгородский государственный технологический университет им. В.Г. Шухова

C текущей ситуацией и прогнозом развития российского рынка цемента можно познакомиться в отчете Академии Конъюнктуры Промышленных Рынков «Рынок цемента в России».