НОВЫЕ ТЕХНОЛОГИИ BAYER ПОЛУЧЕНИЯ СЕРНОЙ КИСЛОТЫ | |||||||||||||||||||||||||||||||||||
Сервисное подразделение концерна «Байер» Bayer Technology Services GmbH сдало в эксплуатацию завод по производству серной кислоты по технологии BAYQIK®, построенный по техническому заданию ведущего европейского производителя свинца, компании Berzelius Stolberg GmbH. | |||||||||||||||||||||||||||||||||||
Весь цикл от начала строительства до пуска завода в эксплуатацию занял всего лишь 17 месяцев. Технология BAYQIK ® (квази-изотермический катализ), разработанная компанией Bayer Technology Services GmbH, позволяет увеличить допустимую концентрацию серной кислоты на входе на 50% по объему. В совокупности с оптимизацией процедур управления технологическим процессом, внедрение нового, инновационного метода позволяет существенно улучшить результаты конверсии, т.е. значительно снизить уровень эмиссии диоксида серы. Кроме того, с применением данной технологии производительность завода увеличивается, по меньшей мере, на 30%. Компания Berzelius провела технологические испытания и оптимизацию данного процесса под свое производство в ходе реализации пилотного проекта непосредственно на одном из своих заводов. Надежность, высокое качество и низкая стоимость стали решающими факторами для принятия руководством компании решения о присуждении контракта на планирование, поставку и строительство завода по производству серной кислоты по технологии BAYQIK® концерну Bayer. Новый завод способен производить до 450 тонн серной кислоты в день. Кроме того, благодаря тому, что BAYQIK ® применяется на периферийной основе, переход существующих мощностей компании по производству серной кислоты на новые технологии занял всего лишь несколько дней. Краткое описание современных промышленных способов получения серной кислоты Производство серной кислоты из серусодержащего сырья включает несколько химических процессов, в которых происходит изменение степени окисления сырья и промежуточных продуктов. Это может быть представлено в виде следующей схемы: где I - стадия получения печного газа (оксида серы (IV)), В реальном производстве к этим химическим процессам добавляются процессы подготовки сырья, очистки печного газа и другие механические и физико-химические операции. В общем случае производство серной кислоты может быть выражено в следующем виде: Сырье подготовка сырья сжигание (обжиг) сырья очистка печного газа контактирование абсорбция контактированного газа СЕРНАЯ КИСЛОТА Конкретная технологическая схема производства зависит от вида сырья, особенностей каталитического окисления оксида серы (IV), наличия или отсутствия стадии абсорбции оксида серы (VI). В зависимости от того, как осуществляется процесс окисления SО2 в SО3, различают два основных метода получения серной кислоты. В контактном методе получения серной кислоты процесс окисления SО2 в SО3 проводят на твердых катализаторах. Триоксид серы переводят в серную кислоту на последней стадии процесса - абсорбции триоксида серы, которую упрощенно можно представить уравнением реакции: SО3 + Н2О Н2SО4 При проведении процесса по нитрозному (башенному) методу в качестве переносчика кислорода используют оксиды азота. Окисление диоксида серы осуществляется в жидкой фазе и конечным продуктом является серная кислота: SО3 + N2О3 + Н2О Н2SО4 + 2NО В настоящее время в промышленности в основном применяют контактный метод получения серной кислоты, позволяющий использовать аппараты с большей интенсивностью. Рассмотрим процесс получения серной кислоты контактным методом из двух видов сырья: серного (железного) колчедана и серы. 1) Химическая схема получения серной кислоты из колчедана включает три последовательные стадии: - окисление дисульфида железа пиритного концентрата кислородом воздуха: 4FеS2 + 11О2 = 2Fе2S3 + 8SО2, - каталитическое окисление оксида серы (IV) избытком кислорода печного газа: 2SО2 + О2 2SО3 - абсорбция оксида серы (VI) с образованием серной кислоты: SО3 + Н2О Н2SО4 По технологическому оформлению производство серной кислоты из железного колчедана является наиболее сложным и состоит из нескольких последовательно проводимых стадий. Обжиг колчедана в токе воздуха представляет собой необратимый некаталитический гетерогенный процесс, протекающий с выделением тепла через стадии термической диссоциации дисульфида железа: FеS2 = 2FеS + S2 и окисления продуктов диссоциации: S2 + 2О2 = 2SО2 что описывается общим уравнением 4FеS2 + 11О2 = 2Fе2S3 + 8SО2, Увеличение движущей силы процесса обжига достигается флотацией колчедана, повышающей содержание дисульфида железа в сырье, обогащением воздуха кислородом и применением избытка воздуха при обжиге до 30 % сверх стехиометрического количества. На практике обжиг ведут при температуре не выше 1000 оС, так как за этим пределом начинается спекание частиц обжигаемого сырья, что приводит к уменьшению поверхности их и затрудняет омывание частиц потоком воздуха.
| |||||||||||||||||||||||||||||||||||
2) Технологический процесс производства серной кислоты из элементарной серы контактным способом отличается от процесса производства из колчедана рядом особенностей. К ним относятся: - особая конструкция печей для получения печного газа; Последующие операции контактирования оксида серы (IV) по физико-химическим основам и аппаратурному оформлению не отличаются от таковых для процесса на основе колчедана и оформляются обычно по схеме ДКДА. Термостатирование газа в контактном аппарате в этом методе осуществляется обычно путем ввода холодного воздуха между слоями катализатора. Существует также способ производства серной кислоты из сероводорода, получивший название «мокрого» катализа, состоит в том, что смесь оксида серы (IV) и паров воды, полученная сжиганием сероводорода в токе воздуха, подается без разделения на контактирование, где оксид серы (IV) окисляется на твердом ванадиевом катализаторе до оксида серы (VI). Затем газовая смесь охлаждается в конденсаторе, где пары образующейся серной кислоты превращаются в жидкий продукт. Таким образом, в отличие от методов производства серной кислоты из колчедана и серы, в процессе мокрого катализа отсутствует специальная стадия абсорбции оксида серы (VI) и весь процесс включает только три последовательные стадии: 1. Сжигание сероводорода: Н2S + 1,5О2 = SО2 + Н2О - ?Н1, где ?Н1 = 519 кДж с образованием смеси оксида серы (IV) и паров воды эквимолекулярного состава (1 : 1). 2. Окисление оксида серы (IV) до оксида серы (VI): SО2+ 0,5О2 <=> SО3 - ?Н2, где ?Н2 = 96 кДж, с сохранением эквимолекулярности состава смеси оксида серы (IV) и паров воды (1 : 1). 3. Конденсация паров и образование серной кислоты: SО3 + Н2О <=> Н2SО4 - ?Н3, где ?Н3 = 92 кДж таким образом, процесс мокрого катализа описывается суммарным уравнением: Н2S + 2О2 = Н2SО4 - ?Н, где ?Н = 707 кДж. Большие масштабы производства серной кислоты особенно остро ставят проблему его совершенствования. Здесь можно выделить следующие основные направления: 1. Расширение сырьевой базы за счет использования отходящих газов котельных теплоэлектроцентралей и различных производств. Важнейшей задачей в производстве серной кислоты является повышение степени превращения SО2 в SО3. Помимо увеличения производительности по серной кислоте выполнение этой задачи позволяет решить и экологические проблемы - снизить выбросы в окружающую среду вредного компонента SО2. Повышение степени превращения SО2 может быть достигнуто разными путями. Наиболее распространенный из них - создание схем двойного контактирования и двойной абсорбции (ДКДА). 4. Физико-химические свойства системы, положенной в основу химико-технологического процесса окисления сернистого ангидрида. Реакция окисления оксида серы (IV) в оксид серы (IV), лежащая в основе процесса контактирования обжигового газа, представляет собой гетерогенно-каталитическую, обратимую, экзотермическую реакцию и описывается уравнением:
| |||||||||||||||||||||||||||||||||||
SО2+ 0,5О2 <=> SО3 - ?Н. Тепловой эффект реакции зависит от температуры и равен 96,05 кДж при 25 оС и около 93 кДж при температуре контактирования. Система «SО2 - О2 - SО3» характеризуется состоянием равновесия в ней и скоростью окисления оксида серы (IV), от которых зависит суммарный результат процесса. Степень превращения оксида серы (IV) в оксид серы (VI) или степень контактирования, достигаемая на катализаторе, зависит от активности катализатора, температуры, давления, состава контактируемого газа и времени контактирования Таблица 1. Зависимость Хр от температуры, давления и содержания оксида серы (IV) в обжиговом газе
(об.дол.) Степень окисления оксида серы (IV) возрастает с увеличением времени контактирования, приближаясь к равновесию по затухающей кривой (рис. 5). Следовательно, время контактирования должно быть таким, чтобы обеспечить достижение равновесия в системе. Из рис. 5 следует, что чем выше температура, тем скорее достигается равновесие (t1 < t2), но тем меньше степень превращения (Х1 < Х2 при Т1 > Т2). Таким образом, выход оксида серы (IV) зависит как от температуры, так и от времени контактирования. При этом, для каждого времени контактирования зависимость выхода от температуры выражается соответствующей кривой, имеющей максимум. Очевидно, что огибающая эти максимумы линия АА (рис. 6) представляет кривую оптимальных температур для различного времени контактирования, близкую к равновесной кривой. От скорости окисления зависит количество оксида серы (IV), окисляющееся в единицу времени, и, следовательно, объем контактной массы, размеры реактора и другие характеристики процесса. Организация этой стадии производства должна обеспечить возможно более высокую скорость окисления при максимальной степени контактирования, достижимой в данных условиях. Энергия активации реакции окисления оксида серы (IV) кислородом в оксид серы (VI) весьма велика. Поэтому, в отсутствие катализатора реакция окисления даже при высокой температуре практически не идет. Применение катализатора позволяет снизить энергию активации и увеличить скорость окисления.
| |||||||||||||||||||||||||||||||||||
В производстве серной кислоты в качестве катализатора применяют контактные массы на основе оксида ванадия (V) марок БАВ и СВД, названные так по начальным буквам элементов, входящих в их состав. БАВ (барий, алюминий, ванадий) состава: V2О5 (7 %) + К2SО4 + ВаSО4 + Аl2(SО4)3 + SiО2 (кремнезем) Для описания скорости окисления оксида серы (IV) в оксид серы (VI) на ванадиевом катализаторе при неподвижном слое катализатора предложены различные кинетические уравнения. К ним относится, например, уравнение (4), связывающее скорость реакции со степенью превращения оксида серы (IV), константой скорости реакции , константой равновесия и давлением газа: Из уравнений (4) и (5) следует, что скорость окисления зависит от константы скорости реакции, сильно возрастающей при повышении температуры. Однако при этом уменьшается константа равновесия Кр и уменьшается значение члена в уравнении (4). Таким образом, скорость процесса окисления оксида серы (IV) зависит от двух величин, изменяющихся с ростом температур в противоположном направлении. Вследствие этого кривая зависимости скорости окисления от температуры должна проходить через максимум. Из уравнения (4) также следует, что скорость окисления оксида серы (IV) тем больше, чем меньше достигаемая в этом процессе степень превращения оксида серы (IV) в оксид серы (VI). Вследствие этого для каждой степени превращения зависимость скорости реакции от температуры будет выражаться индивидуальной кривой, имеющей максимум. На рис. 7 представлена серия подобных кривых, соответствующих различные степеням превращения для газа постоянного состава. Из него следует, что скорость реакции окисления достигает максимума при определенных значениях температур, которая тем выше, чем меньше эта степень превращения, и представляют, очевидно, оптимальные температуры. Линия АА, соединяющая точки оптимальных температур, называется линией оптимальной температурной последовательности (ЛОТ) и указывает, что для достижения наилучших результатов процесс контактирования следует начинать при высокой температуре, обеспечивающей большую скорость процесса (на практике около 600 оС), а затем для достижения высокой степени превращения снижать температуру, выдерживая температурный режим по ЛОТ. Линии ВВ и СС на рис. 7 очерчивают область допустимых температур в реальном технологическом процессе контактирования. В таблице 2 представлен температурный режим работы 4-х слойного контактного аппарата с промежуточным теплообменом, установленный в соответствии с изложенным выше принципом: Таблица 2. Температурный режим контактного узла
Таким образом, противоречие между кинетикой и термодинамикой процесса процесса окисления оксида серы (IV) достаточно успешно снимается конструкцией и температурным режимом работы контактного аппарата. Это достигается разбивкой процесса на стадии, каждая из которых отвечает оптимальным условиям процесса контактирования. Тем самым определяются и начальные параметры режима контактирования: температура 400 - 440 оС, давление 0,1 МПа, содержание оксида серы (IV) в газе 0,07 об. долей, содержание кислорода в газе 0,11 об. долей. | |||||||||||||||||||||||||||||||||||