ЖИДКИЙ ГЕЛИЙ: идеи П.Л. Капицы


Доклад П.Л. Капицы, прочитанный на конференции "Проблемы современной науки", в котором автор изложил основные идеи и результаты исследований сверхтекучего гелия.


Тема моего сегодняшнего доклада - свойства жидкого гелия. Работы в области жидкого гелия представляют интерес в основном потому, что проводятся вблизи абсолютного нуля, т.е. при очень низких температурах. В то время как область высоких температур, связанная обычно с горением, нам хорошо известна из опыта повседневной жизни, с областью низких температур нам приходится сталкиваться гораздо меньше, и даже лабораторий, работающих с глубоким холодом, мало. Поэтому целый ряд представлений о холоде, сложившихся из повседневного опыта и не измененных сведениями, полученными в средней школе, надо несколько пересмотреть, чтобы понять значение изучения явлений при низких температурах в жидком гелии.


Температурные понятия

Все вы знаете, что существует так называемая абсолютная шкала температур, по которой температура отсчитывается только вверх от абсолютного нуля. Комнатная температура по этой шкале составит около 300 К. В этой комнате температура несколько ниже комнатной, но, к счастью, все же недалека от нее.

Дальше идут температуры более высокие, и они достигают самой высокой температуры, какую можно получить в лабораторных условиях, - это 27000 К. Создается такое представление, что от комнатной температуры до абсолютного нуля только 300 К, а там - 27000 К, так что область низких температур лежит гораздо ближе к нам, чем область высоких, например температур самых горячих звезд. Однако это представление неправильно. Как раз диапазон температур от комнатной до температуры абсолютного нуля гораздо больше, чем до более высоких температур. Наши житейские понятия о температуре не соответствуют тем понятиям, которые созданы в физике.

На самом деле диапазон явлений природы, которые можно наблюдать от комнатной температуры до предельно достижимых высоких температур, гораздо менее разнообразен по своему характеру и по интерпретации, чем тех явлений природы, которые мы наблюдаем при более низких температурах.

Гелий и вводит нас в область низких температур. Сам гелий - газ, ожижающийся при 4 К. Посредством разных способов: кипения в вакууме, магнитными методами - можно достигнуть температуры в 1/100 градуса от абсолютного нуля. Вся эта область температур и является той, к которой и относятся свойства жидкого гелия, нами изучаемые и являющиеся темой моего сегодняшнего доклада.

В жидкости атомы не бегают

Но позвольте прежде всего ввести вас в круг идей, которые я так общо назвал, говоря, что диапазон температур от комнатной до абсолютного нуля больше, чем диапазон температур от той же комнатной до предельно высоких. Для этого нужно напомнить, как большинство из вас представляет себе температурную шкалу.

Известно, что атомам свойственно тепловое движение - они колеблются, движутся, и энергия этого теплового движения правильно считается пропорциональной той температуре, при которой эти атомы находятся. Если мы начинаем охлаждать тело, то температурное движение атомов уменьшается, а их кинетическая энергия понижается. Если это был газ, то при этом начинают проявляться силы взаимодействия и состояние газа меняется - он переходит в жидкость. В жидкости атомы уже не свободно бегают - они колеблются вокруг состояния равновесия, но в то же время эти колебания и рассматриваются как температура. Чтобы конкретизировать эти представления, я хочу показать вам опыт, который очень люблю.

Вы видите на экране колеблющуюся рамку с дробинками, выполняющими в этой движущейся модели роль атомов. Процессы охлаждения и конденсации символизируются попаданием шариков-атомов в ямки, занимающие на нашей схеме самое низкое положение. Приводя рамку в движение и сообщая это движение шарикам-атомам, мы получаем наглядную картину того атомарного движения, к которому мы все привыкли.

Хаос движения - состояние полного порядка

С абсолютным нулем мы связываем полный покой атомов. Как нас учат в школе, для того, чтобы охладить вещество, надо остановить атомы в их движении. Правильность этого положения можно иллюстрировать схемой холодильной машины, которая воплощена в модели, служащей для нашей следующей демонстрации.

Вы видите укрепленную на штативе горизонтальную плоскость, на которую падает хорошо отскакивающий от нее шарик. Газ так же бомбардирует стенки ограничивающего его сосуда, как шарик ударяется о плоскость, закрепленную неподвижно. Его кинетическая энергия в основном сохраняется. Но если мы позволим этой плоскости уступать давлению шарика и отходить - шарик будет отскакивать на меньшую высоту. Мы поглощаем таким образом его кинетическую энергию. Это соответствует понижению температуры.

Из этого опыта, как он ни элементарен, можно извлечь одно из самых основных понятий температуры, к которым я хочу вас подвести.

По аналогии с шариком, который, ударившись о движущуюся плоскость, теряет свою энергию, мы могли бы взять атомы, направить их на движущуюся плоскость, уменьшить их энергию, затем направить на другую плоскость, еще уменьшить энергию, наконец, привести в состояние полного покоя и сказать, что мы получили абсолютный нуль - температуру абсолютного покоя. И обычные наши представления заключались в том, что полного покоя температурного движения атомов не существует. На самом же деле мерилом температуры является не само движение, а хаотичность этого движения. Хаотичность состояния тела определяет его температурное состояние, и эта идея (которая впервые была разработана Больцманом), что определенное температурное состояние тела вовсе не определяется энергией движения, но хаотичностью этого движения, и является тем новым понятием в описании температурных явлений, которым мы должны пользоваться. Поэтому, если мы возьмем, например, тело, движущееся с некоторой скоростью, эта скорость может быть очень большой, но температура этого тела может быть очень мала; если это тело ударится о преграду, то его кинетическая энергия переходит в движение атомов, т.е. упорядоченное движение прямо переходит в беспорядочное движение, и мы о беспорядочно хаотическом движении говорим как о температуре. Физику гораздо более важно знать, насколько хаотично движение, насколько беспорядочно состояние тела, чем его температуру. А беспорядочность состояния тела вовсе не должна определяться только движением атомов, она может определяться еще рядом других факторов.

Например, представьте себе, что каждый атом есть магнитная стрелка, как оно в действительности и есть. Предположим, что эти магнитные диполи имеют самое разнообразное направление. Пускай при этом они находятся в температурном покое, т.е. не колеблются. С нашей, физической точки зрения это не будет состоянием полного порядка. Такое тело не будет находиться при абсолютном нуле, потому что абсолютным нулем с нашей точки зрения является не отсутствие движения, а состояние полного порядка. Таким образом, современное понятие абсолютного нуля не есть понятие абсолютного покоя, наоборот, при абсолютном нуле может быть движение - и оно есть, но это есть состояние полного порядка. А температурные свойства определяют степень беспорядочности состояния тела.

Если же у нас есть одно состояние, более упорядоченное, чем другое, то упорядоченное состояние имеет другую энергию, чем беспорядочное. Для того чтобы перевести тело из более упорядоченного состояния в менее упорядоченное, надо сообщить телу некоторую энергию. Но эта энергия вовсе не должна быть с нашей точки зрения тепловой энергией колебания атомов. Она может быть гораздо шире - это может быть беспорядок гораздо больший, чем движение отдельных атомов. Этот беспорядок может заключаться, например, в том, что в одной части кристаллической решетки атомы находятся в более плотном состоянии, а в другой - в менее плотном, т.е. по атомной постройке проходит звуковая волна. Каждый атом может мало отличаться от ближайшего соседа и не двигаться по отношению к ближайшим атомам, но если могут существовать такие флуктуации плотности даже однородного тела, то это также должно рассматриваться как состояние неполного порядка, т.е. тело не находится при абсолютном нуле.

Таким образом, изучение тел при низких температурах представляет тот интерес, что, постепенно охлаждая тело, мы можем его приводить в состояние большего и большего порядка. Хаотическое движение атомов в газе мы можем привести в более упорядоченное состояние, свойственное, например, кристаллической решетке, когда каждый атом находится в определенном месте и только колеблется. Затем, когда и эти колебания прекращаются, весь кристалл в целом может колебаться, могут происходить флуктуации его плотности. Потом и они пропадают. Остаются магнитные моменты отдельных атомов, которые не в одну сторону ориентированы. Продолжая понижать температуру, мы изменяем и магнитные свойства вещества. Затем вступили бы в дело магнитные моменты ядер атомов - это должно произойти при температурах совсем низких. И если мы просмотрим весь диапазон явлений при низких температурах - магнитных, ядерных и прочих, - мы увидим, что здесь действительно гораздо большее разнообразие явлений, чем при высоких температурах, где мы можем наблюдать только следствия диссоциации и ионизации атомов. Все разнообразие явлений, которые имеют место при низких температурах, дает значительно более широкое понятие о природе вещества, чем то, что можно наблюдать при высоких температурах. В этом и есть основной интерес изучения поведения вещества при низких температурах.

Если мы хотим познать свойства вещества, а это и есть основная задача физика, то надо изучать это вещество в состоянии порядка, т.е. при температурах, гораздо ближе подходящих к абсолютному нулю. Эту же мысль можно показать несколько иначе. Если мы, например, понизили температуру в два раза, мы можем сказать, что мы и состояние вещества, грубо говоря, упорядочили в два раза. Понизим температуру еще в два раза - еще вдвое увеличился порядок. Но, следуя таким путем, мы никогда не достигнем абсолютного нуля, мы можем только к нему приблизиться. От 4 К мы перейдем к 2 К, от 2 К к 1 К, затем к 1/2 К и т.д. Но эта шкала температур будет такой же бесконечной, как ряд простых чисел. И такой отрезок этой шкалы, как от комнатной температуры до 0,03 К, будет эквивалентен уменьшению температуры в 10 000 раз. Между тем разница между комнатной температурой и наиболее возможной высокой не больше чем в 100 раз.

Переход к жидкому гелию эквивалентен переходу к температуре Солнца. А так как нам практически удается достигать сотых долей абсолютного градуса, то это значит, что та шкала температур, которой мы владеем в наших криогенных лабораториях, значительно больше и, естественно, дает большее разнообразие явлений. Отсюда и тот интерес к изучению жидкого гелия и его свойств, к которым со все большим вниманием относится современная наука.

Самое красивое явление

Жидкий гелий был получен сравнительно недавно - лет 35 назад. Заслуга его первоначального изучения принадлежит одной лаборатории в Голландии, руководитель которой Камерлинг-Оннес его впервые ожижил. Основная трудность исследования жидкого гелия была в том, что вообще считалось, что гелия в природе очень мало. В воздухе, например, он присутствует в ничтожном проценте, и его трудно было добывать. Американцы первые нашли, что, оказывается, природного гелия довольно много в подземных газах, где количество его доходит до 1-1.5%. Это открыло источник получения гелия в больших количествах, и сразу работа с ним в значительной мере упростилась. Теперь уже существует ряд лабораторий, которые делают опыты с жидким гелием, исследуют свойства вещества при той низкой температуре, которую он создает.
В самой начальной стадии изучения гелия был обнаружен целый ряд явлений, которые по своему характеру нельзя было даже предвидеть. Наиболее красивое из всех явлений такого рода - сверхпроводимость. Камерлинг-Оннес открыл ее совершенно случайно: он мерил сопротивление свинцовой проволоки и вдруг заметил, что в ней пропадает сопротивление. С понижением температуры сопротивление электрическому току вообще-то понижается, но, чтобы оно уменьшилось до нуля, - это было весьма удивительно. Еще удивительнее было то, что ток, пущенный по замкнутому проводнику, при температуре сверхпроводимости не пропадал. Были поставлены исключительно тщательные эксперименты: опыт продолжался в продолжение недели, совершенство экспериментальной методики доходило до того, что можно было обнаружить ничтожнейшие изменения тока, - и никаких изменений обнаружено не было... Поэтому с полной достоверностью можно сказать, что при температуре жидкого гелия в свинце и в ряде других металлов появляется состояние, при котором ток может течь без всякого сопротивления.

При дальнейшем изучении поведения вещества при температуре жидкого гелия был обнаружен ряд других фактов, которые были менее неожиданными, например обращение теплоемкости вещества почти в нуль. Был обнаружен целый ряд магнитных свойств вещества, но сравнительно недавно было обращено внимание на поразительные свойства самого гелия. Гелием пользовались как охлаждающей средой, но свойства самого гелия представляют, как оказалось, не менее интересную область для исследований, чем свойства тех веществ, которые находятся в гелии при этих низких температурах.

Дело в том, что если "откачивать" испаряющийся гелий, т.е. понижать давление над жидкостью, то постепенно температура его кипения понижается. Таким образом, удается достигнуть температуры примерно 1 К. При этом происходит любопытное изменение состояния самого гелия. При температуре ожижения 4 К он представляет собой жидкость малого удельного веса, раз в пять легче воды, очень прозрачную, с очень малым коэффициентом преломления, вследствие чего его трудно видеть: нужно приноравливаться, чтобы заметить, наполнен ли сосуд жидким гелием или нет. Когда на жидкий гелий смотрят, на него падает свет и он непременно будет кипеть. То количество света, которое проходит через прозрачный дьюаровский сосуд и падает на него, сообщает ему достаточное тепло, чтобы привести его в состояние кипения. Но при дальнейшем понижении температуры все эти явления внешне пропадают. Поверхность гелия становится гладкой, как зеркало. Его еще труднее заметить, потому что по пузырькам вы его видите лучше. Это явление заметил еще Камерлинг-Оннес, но стал его изучать Кеезом лет десять тому назад. Его поразило, что пропадает кипение, и он стал изучать тепловые свойства гелия.

Кеезом, в частности, решил выяснить, какова в гелии теплопроводность. Он взял капилляр, в одном месте его поставил термометр, в другом нагреватель и смотрел, как тепло распространяется в капилляре. Капилляр был очень тоненький. Техника эксперимента очень трудна, потому что приходится работать с вакуумными сосудами, причем один из них погружен в другой, так как малейший доступ тепла уже способен вызвать кипение и нарушить все тепловые явления. О трудностях экспериментальной техники я не имею возможности рассказать. Так вот, обнаружилась потрясающая вещь: оказалось, что жидкий гелий обладает чрезвычайной теплопроводностью. Теплопроводность меди и серебра мала по сравнению с теплопроводностью, которая наблюдалась там. Это было очень удивительно.

Распространение тепловых волн оказалось исключительно быстрым как раз там, где, казалось, меньше всего можно было бы ждать теплового движения. Кеезом нашел, что жидкий гелий сверхтеплопроводен.

Мы заинтересовались этим явлением. Нам показалось, что, может быть, это ошибка. Но я повторил опыты Кеезома и получил еще большие значения теплопроводности, чем сам Кеезом. Можно было показать, что такое количество тепла, которое фактически переносилось, лежит за пределами физических возможностей, что тело ни по каким физическим законам не может переносить больше тепла, чем его тепловая энергия, помноженная на скорость звука. А скорость звука в гелии известна - она равна 250 м/с. С помощью обычного механизма теплопроводности тепло не могло переноситься в таком масштабе, как это наблюдалось. Надо было искать другое объяснение. И вместо того, чтобы объяснить перенос тепла теплопроводностью, т.е. передачей энергии от одного атома к другому, можно было объяснить его более тривиально - конвекцией, переносом тепла в самой материи. Не происходит ли дело так, что нагретый гелий движется вверх, а холодный опускается вниз, благодаря разности скоростей возникают конвекционные токи, и таким образом происходит перенос тепла. Но для этого надо было предположить, что гелий при своем движении течет без всякого сопротивления. У нас уже был случай, когда электричество двигалось без всякого сопротивления по проводнику. И я решил, что гелий так же движется без всякого сопротивления, что он является не сверхтеплопроводным веществом, а сверхтекучим.

Были сделаны эксперименты измерения вязкости - величины, обратной текучести. Чтобы гелий был сверхтекучим, необходимо, чтобы его вязкость была мала. Для того чтобы измерить такую малую вязкость, нужно было придумать исключительно тщательную технику эксперимента. Оказалось, что нужно пропускать гелий не в капилляре, а через щель, ширина которой равна долям микрона. Если бы гелий легко протекал через такую щель, он был бы сверхтекучим. Оказалось, что через эти тонкие щели гелий протекает так же легко, как и через большие отверстия. Есть формула Бернулли, в которую не входит вязкость, применимая к идеальной жидкости. Гелий оказался такой идеальной жидкостью. Можно было обнаружить только предел вязкости 10-11 П. Если вязкость воды равняется 10-2 П, то это в миллиард раз более текучая жидкость, чем вода. И при этом наши измерения были лишь техническим пределом, за которым гелий мог быть еще менее вязким.

Казалось бы, установив сверхтекучесть гелия, можно было таким образом объяснить все явления конвекции. Но на самом деле оказалось, что на этом только начинаются, а не кончаются все интересные свойства гелия. Выяснилось, что то объяснение, которое мною было дано, из которого я исходил, было неправильным.

В действительности вязкость гелия мала, но этого все-таки недостаточно, чтобы объяснить его высокую теплопроводность конвекционным механизмом. Те силы, которые приводят в действие конвекционные потоки, - силы тяжести недостаточны, чтобы объяснить эту теплопроводность. В горизонтальном капилляре теплопроводность наблюдается в такой же степени, как и в вертикальном. Я сделал капилляр, который вращался, - явление оказалось одинаковым во всех положениях капилляра. Надо было искать что-то другое. И тут ключ к объяснению дальнейшего дало открытие, сделанное английскими физиками в Мондовской лаборатории, директором которой я был прежде, - Алленом и Джонсом. Они нашли другое явление в гелии, тоже очень интересное. Они нашли, что если бульбочку наполнить наждаком, опустить в гелий и осветить светом, то гелий начинает фонтанировать. Появляется фонтан до 20 см высотой. То есть под влиянием света и тепла в гелии возникают какие-то силы, которые заставляют его очень энергично течь.

Мы стали изучать эти силы. Была взята маленькая колбочка с нагревателем; она была помещена в гелий и обнаружилось, что при нагревании гелия в колбочке поток жидкости вырывался наружу, в окружающий гелий. Если перед выходом колбочки подвесить маленькую заслонку, то ее отбрасывает в сторону, т.е. жидкость на нее оказывает давление. Из сосудика вырывается сильный поток. Но спрашивается: если из него течет поток и если он не становится при этом пустым, то каким образом он снова наполняется гелием? Тогда нужно было сделать следующий опыт: посмотреть, равно ли действие противодействию. Было испытано действие струи на колбочку и оказалось, что действие равно противодействию. Можно было думать, что как-то со стороны вливается гелий. Этого не оказалось. Таким образом, мы имели интересное явление: струя вырывается, но количество гелия не изменяется. Объяснение этому явлению я дам несколько позже, а прежде расскажу о нескольких других опытах.

Если мы имеем вырывающуюся струю, то мы можем эту струю перевести в работу, в энергию. Мы сделали приборчик наподобие сегнерова колеса с несколькими ножками, исходящими из общего объема, и затем нагревали внутреннюю часть этого сосудика пучком света. Такой "паучок" пришел в движение. Таким образом тепло переводилось в движение.

Но если тепло можно перевести в движение, то, казалось бы, и наоборот, движение в гелии можно перевести в тепло. Для того, чтобы посмотреть, насколько обратимо это явление, было сделано два сообщающихся сосуда, причем в одном гелий был выше, чем в другом, - мы дали ему перетекать. Оказывается, при этом установилась разность температур.

Таким образом, мы установили, что если гелий течет внутри капилляра, то от более нагретого к более холодному телу образуется поток, а при заданных уровнях в одном месте температура будет повышаться (там, куда втекает гелий) и в другом - откуда он вытекает - понижаться.

Насколько совершенно переходило тепло в работу? Это был следующий вопрос, который мы должны были выяснить. Оказалось, что преобразование тепла в работу происходит с коэффициентом полезного действия, равным единице, энтропия оставалась постоянной, т.е. явление было термодинамически обратимым.

Следовательно, мы приходим к интересному методу получения низких температур: мы можем перекачивать гелий через очень тонкий капилляр и получать понижение температуры. Теоретически, как я дальше скажу, мы можем получать температуру сколько угодно низкую, близкую к абсолютному нулю (без возможности когда бы то ни было достигнуть его). Технические трудности здесь большие, может быть, они значительно уменьшат наши возможности. Но это феноменологическая сторона явления.

Беспорядочность состояния гелия

Как же теоретически объяснить, что гелий может вытекать из сосуда, не втекая в него, образуя такую бездонную бочку? Как теоретически можно себе представить, что при разности температур тепло обратимо переходит в движение? Первую идею в этом направлении дал французский физик Тисса. Его идея была высказана в небольшой статье. Разработал до деталей теорию Ландау. Идея заключается в следующем.

Лев Давидович Ландау

Гелий в сверхтекучем состоянии состоит из двух частей, представляя собой как бы раствор одной жидкости в другой. Одна составляющая гелия - это гелий, находящийся при температуре абсолютного нуля, т.е. во вполне упорядоченном состоянии. А другая его часть - это гелий, каким он обычно бывает, когда конденсируется. С понижением температуры меняется пропорция одного гелия по отношению к другому.

Таким образом, мы имеем как бы два гелия. Одна жидкость находится энергетически на самом низком уровне, другая жидкость - в другом, нормальном энергетическом состоянии. Только два эти состояния и могут быть в гелии при этих температурах. Беспорядочность состояния гелия определяется тем, что существует постоянное перемешивание этих двух компонент. Если в одном месте увеличивается концентрация компоненты обычного гелия, а в другом будет больше сверхтекучей компоненты, то у вас моментально возникнет стремление выровнять эти компоненты, т.е. возникают какие-то термодинамические силы, которые стремятся их выровнять.

Гелия в промежуточном состоянии между этими двумя в природе не существует: либо он при абсолютном нуле, либо он в другом состоянии, нормальном. Гелий в сверхтекучем состоянии не может давить на заслонку, и вообще сверхтекучая жидкость не может производить никакого давления, так как это жидкость, вязкость которой равняется нулю, - мы ее динамическими методами обнаружить не можем. Поэтому ее втекание в колбочку остается нами незамеченным: нет таких физических методов, посредством которых мы могли бы обнаружить его втекание. А вытекающая часть - нормальный гелий. При нагревании сверхтекучая часть гелия переходит в нормальную, и внутри колбочки появляется избыточный нормальный гелий, он-то и вырывается наружу и давит на заслонку.

Такое представление дается теорией, оно математически развито в гидродинамике двух жидкостей, которые находятся в двух квантовых состояниях и могут течь навстречу друг другу, причем одна обладает нулевой энтропией и не может быть обнаружена механическим взаимодействием, а другая - это нормальная жидкость. Представление, конечно, необычное, но наблюдавшиеся явления полностью им объяснялись. Так же получалась термодинамическая обратимость этих явлений. Из нее вытекало как следствие, что, когда мы пропускаем гелий через очень тонкий канал, через него проскальзывает только сверхтекучая компонента по другую сторону щели образуется недостаток компоненты с нормальной вязкостью - появляется разность температур. Так как создать разность температур мы не можем, не создавая работы, необходимо, чтобы получилась разность давлений. Все это хорошо совпадало с теоретическими расчетами.

Вторая звуковая скорость

Но Ландау сделал еще одно заключение. Он обратил внимание на то, что, если существует смесь двух жидкостей, могут быть и две звуковые скорости. Одна звуковая скорость в нормальном гелии была известна - 250 м/с. Но должна появиться еще и другая скорость. И Ландау предсказал ее и даже вычислил, что она должна равняться 25 м/с. Мы начали искать эту вторую скорость как раз перед войной. Первую скорость нашли, а второй звуковой скорости найти не могли. И я всегда говорил Ландау: "Где же ваша вторая звуковая скорость?" Когда теоретиков раззадоришь, они начинают изучать явление более подробно.

И действительно, вскоре Ландау сказал даже, как ее надо искать. Она возбуждается не нормальным путем, не движением диафрагмы перпендикулярно, а скорее - движением вдоль, а еще лучше - тепловыми флуктуациями. Скорость звука второго порядка не так легко наблюдать, но воспитанник Московского университета Пешков придумал метод для ее наблюдения. Недавно, месяц назад, вторая скорость звука была им обнаружена в нашей лаборатории, она оказалась равной 19,6 м/с, т.е. весьма близкой к предсказанной.
Мы имеем здесь интересный пример того, как на основании теории было предсказано совершенно новое явление, неизвестное ни в одной другой жидкости, и доказано его существование. Это мне напоминает случай, когда Леверье предсказал существование планеты Нептун по возмущениям орбиты Урана, и Араго вскоре обнаружил неизвестную планету. Но планета уже существовала, нужно было только убедиться в ее присутствии. А второго звука не существовало, и в поисках его было меньше уверенности.

Всякая теория, предсказывающая новые явления, вносит, большой вклад в науку, создает направление экспериментальной работы, и я думаю, что в области жидкого гелия мы двинули теорию значительно вперед. В ближайшие недели эта работа появится в печати.

Осталось еще немало интересного

Вот примерно тот обзор явлений в жидком гелии, с которым я хотел вас сегодня ознакомить. Здесь было, конечно, много неясного и интересного, и немало еще осталось. При протекании гелия с некоторой скоростью он переходит в нормальное состояние, т.е. теряет свою сверхтекучесть. Это для нас - совершенно непонятное явление. Оно, по-видимому, как-то связано с аналогичным явлением в сверхпроводниках, когда при известном магнитном поле сверхпроводимость пропадает. Какая-то аналогия существует между этим явлением и поступательным движением жидкого гелия; можно даже вычислить критические скорости, при которых теряется его сверхтекучесть. Они получаются другого порядка, чем те, которые наблюдаются экспериментально. Работы в этом направлении были прерваны войной, и только недавно они были возобновлены.

Перед войной было начато также получение сверхнизких температур путем принуждения гелия протекать через тонкие каналы. И эти опыты были прерваны войной. Но мы надеемся, что скоро полностью вернемся к тому счастливому состоянию, которое было нарушено нашествием варваров, и сможем отдать все силы изучению новых загадок природы, которые помогут нам в значительной мере разобраться в интереснейших явлениях, происходящих вблизи абсолютного нуля.

С анализом российского рынка гелия Вы можете познакомиться в отчете Академии Конъюнктуры Промышленных Рынков«Рынок газообразного и жидкого гелия в России».

Академик П.Л. Капица