К НЕПРЕРЫВНОМУ ЦИКЛУ: будущее переработки пластмасс | ||||||||||
Развитие технологий обработки пластмасс и робототехники неминуемо идет в направлении выстраивания непрерывного производственного цикла, начинающегося от сырьевых материалов и завершающегося упакованным устройством. | ||||||||||
Пример, представленный в виде диаграммы, изображен на рисунке 1 - Примеры линейных операций. Рисунок 1: Примеры линейных операций. Данные методики быстро развиваются не для того, чтобы кто-то получил некоторое интеллектуальное удовлетворение или по велению моды. Это происходит потому, что возрастает свобода логистики, значительно экономится время, средства, энергия, усиливаются характеристики и повышается качество. Линейное смешивание выгодно для всех рынков, в большей или меньшей степени, например автомобилестроение, производство упаковок, электричество и электроника, приборы, здравоохранение и медицина, промышленность, коммуникации, железнодорожная отрасль и другие. Производятся всевозможные детали, такие как дверцы с подушками безопасности, панели, кабины, бутылки, компоненты компьютеров, кабельные каналы, крышки, двери, пленки, арматура, внешние интерфейсы, соединения, литые детали, панели, трубы, профили, листы, задние двери автомобилей, поддоны, древесно-полимерные композиционные материалы… Применяются все полимеры, от потребительских пластмасс до высокотехнологичных полимеров, в том числе РЕЕК (полиэфирэфиркетон) или другие, а также каучуки и ТРЕ (термопластические эластомеры). Почему? Когда смешивание включается в процесс обработки, подавление некоторой технологической операции (см. Рисунок 2 – схематическое сравнение одно- и двухэтапного процессов) приводит к появлению нескольких преимуществ: - Устраняется необходимость в месте промежуточного хранения, что упрощает логистику и, следовательно, устраняется необходимость в управлении Рисунок 2: Схематическое сравнение одно- и двухэтапного процессов. Некоторая информация для размышления Снижение затрат – это не теоретическая величина. Оно становится значительным в тех случаях, когда методика приводится в соответствие с уровнем производительности. Например, по словам М. СИЕВЕРДИНГ (ANTEC 2002, стр.666), в крупносерийном производстве, таком как изготовление деталей для автомобилей, снижение затрат при помощи постоянного линейного смешивания термопластмасс с длинными волокнами (LFT) достигает уровня 0.25 – 0.35$ на кг. С другой стороны, линейное окрашивание максимизирует снижение затрат при низкой производительности благодаря высокой стоимости предварительно окрашенных маточных смесей, приобретенных из сторонних источников. | ||||||||||
Компания Composite Products Inc. (CPI) лицензирует свой процесс «прямой подачи термопластмассы» (DFT) для прессования в формах, при котором скорость смешивания выравнивается под скорость прессования. CPI заявляет, что с каждой деталью весом несколько килограмм затраты снижаются примерно на 30% в сравнении с GMT (термопластмассой со стеклянной матрицей) и 50% в сравнении с предварительно смешанной LFT (термопластмасса с длинными волокнами). Дороговизна оборудования для линейного смешивания окупается при ежегодном производстве на уровне 40,000 единиц. Динамика уровней тепла и сдвига и соответствующей тепловой деструкции являются значимыми величинами даже для низкоплавких полимеров. Например, группа Х. АЛМЕРАСА (Прогресс в каучуке, журнал Plastics and Recycling Technology, 20, 1, 2004, стр.25) исследовала воздействие одного цикла обработки на свойства вздувшихся сплавов полипропилена и полиамида. Она заявляет, что свойства изменялись так, как это изображено в Таблице 1. Таблица 1: Примеры изменения свойства после первого цикла обработки.
Ключ к успеху: Адаптация стратегии к каждому конкретному случаю с учетом типа добавки, уровня производительности и требований к свойствам. Выбор стратегии для добавок и оборудования зависит от природы внедряемой добавки, которыми в большинстве случаев являются: - Обычные добавки с частицами небольшого и постоянного размера Ниже приводятся общие замечания, которые могут оказаться бесполезными в некоторых случаях. Часто их недостаточно. В любом случае, необходимо провести исследования и реальные эксперименты с вовлечением реальной добавки, оборудования и процесса, используемых при производстве реальной детали. Базовые свойства добавок не учитываются, например их температурная устойчивость в условиях обработки, их армирующая эффективность и другое... Стратегия для стандартных добавок Линейное или прямое смешивание стандартных добавок с малыми частицами постоянного размера и нереактивных добавок в сравнении с полимером производится сравнительно просто. Однако требуется проявлять некоторую осторожность в зависимости от формы добавки. На рынке присутствуют конкурирующие физические формы: - Концентраты или маточные смеси, применимые в тех случаях, когда их полимерный носитель совместим с пластмассой, которую необходимо улучшить Стабилизаторы: - Главные и вторичные антиоксиданты Порошковые красители и добавки смешиваются с гранулированными пластмассами, что приводит к быстрому и недорогому производству определенных составов даже малыми партиями. Перед использованием конвертеров пластмасс в важных областях необходимо провести с ними эксперименты. Главный способ, который используют компании, занимающиеся прессованием, - это введение в полимерный носитель маточных смесей или концентратов пигментов или добавок. В процессе наполнения пресс-формы для литья под давлением или во время экструзии маточная смесь вводится в природную смолю в заранее установленном количестве, чтобы получить требуемый цвет или улучшение свойств. Затем ее расплавляют, смешивают и пластифицируют при помощи нагрева и разрезания шнеком. Для концентратов требуются большие заказы, они гораздо дороже порошков, так как приобретаются в небольших количествах. Следовательно, они с экономической точки зрения не подходят для многих процессов с краткосрочными этапами, но пригодны для средних и крупных процессов. Жидкие или пастообразные краски могут стать дешевой альтернативой концентратам и маточным смесям для большинства пластмассовых смол и методов обработки пластмасс. Преимущества использования жидкой краски заключаются в снижении затрат и простоте рассеивания. Жидкая краска эффективна и проста в применении, если ее использовать вместе с простым оборудованием наподобие «насоса в баллоне», системой дозирования, исключающей перемешивание и запатентованной компанией Riverdale. Линейное смешивание широко применяется в промышленности, и авторы этой статьи предпочитают приводить нетипичные и высокотехнологичные области применения. Полная линия производства медицинских трубок, невосприимчивых к рентгеновскому излучению ДЖ. ОРГАНДО (Технологии пластмасс: выпуск за май 1994 г.) описывает полную линию производства медицинских трубок, построенную компанией Leistritz в целях производства трубок из олефина для катетеров, которые невосприимчивы к рентгеновскому излучению. HDPE (полиэтилен высокой плотности), LDPE (полиэтилен низкой плотности) и компонент из бария или висмута смешиваются на линии, состоящей из 18-мм двушнекового экструдера обратного вращения, который под прямым углом питает модифицированный 12-мм, 10:1 одношнековый экструдер производства компании Randcastle Extrusion. Выталкиватель и резец производства компании Versa Machinery завершают данную линию, которая производит трубки для катетеров со скоростью около 1-3 кг/ч. | ||||||||||
Армирование термопластмасс с «длинными» волокнами Армированные пластмассы с длинными волокнами (LFT или LFRT) представляют большой интерес благодаря уникальному равновесию структурных свойств и простоты обработки. Они были разработаны некоторыми производителями термопластмасс, и резкий рост их применения в производстве автомобильных деталей привел к появлению крупных заказов от заводских производителей, и при работе некоторых видов оборудования механики предлагают использовать во время прессования LFT. Главная трудность заключается в управлении процессом внедрения волокон, которые в готовой детали должны иметь требуемую длину. На самом деле, механические свойства прямо связаны с длиной волокон, что можно увидеть на рисунке 3 – Примеры соотношения механических свойств и длины стекловолокна. Рисунок 3: Примеры соотношения механических свойств и длины стекловолокна. Эта проблема решается разделением функций смешивания и армирования, см. рисунок 4 – Принцип линейного производства LFT. Рисунок 4: Принцип линейного производства LFT. Пенообразованиие Прямая газовая экструзия или процесс нагнетания В отличие от других традиционных процессов пенообразования прямое пенообразование термопластмасс осуществляется посредством нагнетания газа под высоким давлением непосредственно в поток расплава. Расширение происходит тогда, когда материал возвращается к атмосферному давлению на выходе из матрицы, или в пресс-форме, перед охлаждением, при котором установится постоянное физическое состояние термопластмассы. Итоговые свойства зависят от количества газа, размера и дисперсии пузырьков. Например, в процессе MuCell используется газ (обычно CO2), который в сверхкритическом состоянии создает микропористую термопластическую пену с равномерно распределенными микроскопическими клетками одинакового размера, в пределах 5-50 микрон. Рисунок 5: Принцип процесса нагнетания MuCell. Разумеется, для нагнетания газа требуется источник газа, оборудованный системой измерения и, как правило: - Механизмы экструзии или нагнетания должны быть оборудованы определенными шнеками и барабанами с инжекторами, которые обеспечивают нагнетание газа и его хорошую дисперсию. По словам представителей компании TREXEL Inc., процесс MuCell позволяет значительно снизить производственные издержки благодаря сокращению времени циклов, потребления энергии и, разумеется, расход материалов уменьшается в пропорции, аналогичной реальному коэффициенту пенообразования в готовой детали. Trexel утверждает, что периоды окупаемости выстраиваются в следующем порядке, в зависимости от материала, размера и сложности изготовленной детали: - 0.8 – 1.2 года для товаров на основе полипропилена Посредством линейного смешивания можно использовать всевозможные решения, характер которых зависит от природы использованных добавок и методов обработки. В результате появляется огромный выбор вариантов выполнить требования проектировщиков. Одна и та же проблема может быть решена несколькими способами, и у каждого из них есть конкретная область применения в зависимости от природы готовой детали, размера процессов, итоговых требований и доступности оборудования. Если окрашивание является наиболее распространенной областью применения, то линейное смешивание также затрагивает другие традиционные добавки и даже армирование длинными стекловолокнами или природными волокнами, высоконаполненные соединения, такие как ДПКТ, высокотехнологичные производства, прямое газовое пенообразование, реактивные соединения, в том числе полимеры с возможностью образования поперечных связей. Линейное смешивание может завершаться линейными операциями мониторинга процесса, сборки или декорирования... Линейное смешивание обладает как экономическими, так и техническими преимуществами, к главным из которых относятся следующие: - Сокращение издержек благодаря меньшему энергопотреблению и снижению цены на сырьевые материалы, если для реального производства был правильно выбран процесс Иногда капитальные инвестиции могут оказаться более высокими, но даже в этих случаях сроки окупаемости достаточно коротки. Мишель БИРОН | ||||||||||