Требуемая толщина пенополистирольного слоя в панелях без теплопроводных включений в зависимости от ГСОП составляет от 117 до 192 мм. С применением жестких минераловатных плит толщина слоя увеличивается и составляет от 236 до 384 мм. Приведенные на рис. 2 зависимости, полученные на основании выполненных расчетов температурных полей панелей с гибкими металлическими связями, утепленных пенополистиролом, показывают, что при изменении Ro'cn с 2 м2 °С/Вт до 9,5 м2 °С/Вт значение г снижается с 0,76 до 0,55. При использовании минва-ты эта закономерность сохраняется при большем значении г. Зафиксированный разрыв в r=f(R^cn) объясняется тем, что с увеличением толщины теплоизоляционного слоя более 200 мм возникает необходимость, в целях сохранения прочности панели, установки дополнительных металлических связей или увеличения их диаметра при том же количестве. Существенное влияние на снижение г оказало воздействие оконных откосов, углов и узлов сопряжения. Для обеспечения требуемого уровня теплоизоляции в реальной трехслойной панели с гибкими металлическими связями из условий энергосбережения в г. Москве необходимо увеличить толщину пенополистирольного слоя до 180 мм, а в г. Якутске до 370 мм. Соответственно, толщина панели будет составлять 345 мм и 535 мм. При применении минераловатных плит толщина теплоизоляционного слоя в г. Москве должна составлять 315 мм, а в г. Якутске 550 мм. Толщина панели соответственно возрастает до 480 мм и 715 мм. Аналогичная закономерность соблюдается и в кирпичных стенах с гибкими металлическими связями. В наружных стенах с вентилируемыми воздушными прослойками, насыщенными металлическими кронштейнами, поддерживающими тяжелые облицовочные плиты из гранита, известняка и др. подобных материалов, коэффициент теплотехнической однородности уменьшается до 0,4. На снижение теплозащитных качеств дополнительно влияет продольная фильтрация воздуха в минераловатных плитах, а также ветер, проникающий через швы облицовочных элементов. Это влияние в зависимости от конструктивного решения приводит к повышению теплопроводности минераловатного слоя на 25-30 %. Поэтому толщину теплоизоляционного слоя с \ = 0,05 Вт/(м °С) даже в климатических условиях г. Москвы необходимо принимать до 400 мм. Поскольку конструктивно стены с такой толщиной теплоизоляционного слоя невозможно обеспечить, то строят с уменьшенной толщиной, нарушая требования СНиП. Замена в трехслойных бетонных панелях (Ronp=3,5 м2 °С/Вт) металлических гибких связей на бетонные армированные шпонки потребует принимать толщину пенополистирольных плит равной 300 мм, а минераловатных около 500 мм. Для северных регионов страны толщина слоя из пенополистирола в этих панелях должна составлять не менее 500 мм, из минваты - 800 мм. Значительно изменяется теплотехническая однородность при применении эффективных утеплителей в стенах из кирпича. При замене в них гибких металлических связей на кирпичные поперечные диафрагмы толщину теплоизоляционного слоя из минваты в северных регионах страны необходимо увеличивать до одного метра при X = 0,08 Вт/(м °С). Закономерности, полученные нами, подтверждают результаты исследований в [5,6]. Поэтому в работах [6,7] авторами изменений №3 СНиП-П-3-79* до их введения были сделаны выводы о невозможности обеспечить требуемый уровень теплоизоляции наружных стен традиционными материалами, т.е. блоками и панелями на пористых заполнителях, яче-истобетонными блоками, эффективным пустотелым керамическим кирпичом и другими местными материалами. В [7] ими утверждается, что для достижения установленного уровня теплоизоляции законодательно стимулируется применение эффективных теплоизоляционных материалов, таких как минеральная вата, пенополиуретан, пенополистирол. При увеличенной толщине утеплителей в стенах существенно возросли усадочные и температурные деформации, что привело к образованию более заметных трещин, разрывам контактных зон с конструкционными материалами, изменилась воздухопроницаемость, паропроницае-мость, что в процессе эксплуатации снижает теплоизоляционные качества и капитальность наружных стен. В северных регионах страны, с холодным коротким летом, стены с увеличенной толщиной теплоизоляции не успевают войти в квазистационарное влажностное состояние, что ухудшает санитарно-гигиенические условия в жилых помещениях и приводит к систематическому накоплению влаги и ускоренному морозному разрушению, снижению срока службы и более частым капитальным ремонтам стен. Даже у далеких от строительной науки застройщиков целесообразность такого утепления стен вызывает сомнения, хотя бы потому, что они конструктивно невыполнимы и не могут обеспечить долговечность стен и надежность их в эксплуатации, а при невыполнении своевременно капитального ремонта могут угрожать безопасности проживающему населению. Поэтому нормы по обеспечению уровня теплоизоляции наружных стен из условий энергосбережения не могут быть обязательными для исполнения не только потому, что они относятся к экономической категории требований, но и из условий безопасности для проживания в зданиях с такими стенами. Нормативные требования СНиП 11-3-79*, СНиП 23-02-2003 и ТСН к уровню теплоизоляции наружных стен из условий энергосбережения в диапазоне, превышающем санитарно-гигиенические требования, согласно Закону "О техническом регулировании", должны использоваться при проектировании и строительстве жилых зданий как добровольные. Для обязательного исполнения в соответствии с Законом следует принимать требования из условий обеспечения санитарно-гигиенической безопасности для проживания граждан. Чтобы не применять в строительстве конструкции наружных стен с чрезмерной толщиной теплоизоляционного слоя, строители и проектировщики пошли по пути использования новых систем утепления, используемых в зарубежной строительной практике с более мягким климатом, чем в Москве и, тем более, на севере России. Несмотря на их большое многообразие, суть их сводится к приклеиванию, а затем закреплению дупелями теплоизоляционного слоя к несущей стене или металлическими элементами, предварительно к ней закрепленными. После этого на теплоизоляцию наносится штукатурный слой толщиной 8-10 мм по сетке с дополнительным армированием зон, благоприятствующих появлению трещин. |