В зависимости от назначения получают бетоны плотный, крупнопористой, поризованной и ячеистой структур. По зерновому составу заполнителей подразделяют на мелко – и крупнозернистые, а по плотности – на тяжелые и легкие. Тяжелые бетоны на шлакощелочном вяжущем относят к конструкционным бетонам, легкие бетоны разделяют на конструкционные, конструкционно-теплоизоляционные и теплоизоляционные. Конструкционные легкие шлакощелочные бетоны классов В15…В50 (М200…М600) со средней плотностью 1500-1800 кг/ м3 изготовляют на керамзите, доменном гранулированном шлаке, аглопорите, известняке-ракушечнике, шлаковой пемзе, отходам древесины. Эти же заполнители применяют для конструкционно-теплоизоляционных бетонов со средней плотностью 500…1400 кг/ м3, которые характеризуются прочностью при сжатии 3,5…40 МПа и теплопроводностью 0,17…0,4 Вт/(м * 0С). Теплоизоляционные шлакощелочные материалы средней плотности 170…450 кг/ м3, прочностью при сжатии от 0,25…2МПа и теплопроводностью 0,059…0,13 Вт/(м * 0С) разработаны на основе вспученного перлита. Тяжелый высокопрочный бетон на крупном заполнителе Прочность щлакощелочных бетонов регулируют, главным образом, изменением плотности щелочного компонента, степенью влияния которой зависит от его природы. Наиболее ощутимо сказывается на повышении прочностных характеристик применение растворимых силикатов натрия. Бетоны на их основе являются высокопрочными. При использовании карбонатных щелочных компонентов прочность бетонов составляет 45…80 МПа. При этом в большей мере проявляется и влияние вида шлака, особенно ярко выраженное в бетонах естественного твердения, которые в более поздние сроки твердения продолжают интенсивно набирать прочность. При снижении модуля основности шлака и уменьшении его расхода прочность таких бетонов уменьшается на одну – полторы марки. Наибольшей прочности при сжатии (120МПа) характеризуются пропаренные бетоны на основе нейтральных шлаков и низкомодульных (Мс=1…2) жидких стекол. С уменьшением силикатного модуля жидкого стекла прочность пропаренных бетонов увеличивается. Тяжелые щлакощелочные бетоны выпускают следующих классов (марок) – В10 (200), В15 (250), В20 (300), В25 (400), В30 (500), В55 (800), В60 (900), В70 (1000), В820 (1100), В90 (1200), В100 (1300), В110 (1400). В зависимости от условий работы изделий и конструкций предусмотрены следующие марки шлакощелочного бетона: по морозостойкости – F200, F300, F400, F500, F500, F600, F700, F800, F900, F1000; по водонепроницаемости – W4, W6, W8, W10, W12, W14, W16, W18, W25, W30. Морозостойкость – одна из важнейших характеристик шлакощелочного бетона, обуславливающая его долговечность. Морозостойкость шлакощелрчного бетона в 2…3 раза превышает морозостойкость цементного бетона. В зависимости от вида шлака и щелочного компонента она соответствует 200…100 циклам попеременного замораживания и оттаивания. Водонепроницаемость шлакощелочных бетонов определяется плотностью структуры затвердевшего камня, обилием замкнутых сферических глеевых пор и микропор, высокими адгезионными свойствами вяжущего по отношению к заполнителям и другими характеристиками. В наиболее жестких условиях испытаний при попеременном увлажнении и высушивании, хранении в атмосфере углекислого газа коррозия арматуры в шлакощелочных бетонах ниже, чем в шлакопортландцементных. Шлакощелочной бетон – коррозионно- и биостойкий материал (стойкость обусловлена свойствами вяжущего), в связи с этим его рекомендуют использовать в конструкциях, работающих в условиях агрессивных сред: в мягких и проточных водах – для элементов градирен ТЭЦ и ТЭС, облицовки оросительных каналов, элементов лотковых линий в сульфатных водах концентрацией до 50000 мг/л, для строительства морских сооружений и др. Мелкозернистые бетоны. Представляют собой искусственный камень, получаемый после отвердения рационально подобранной смеси молотого шлака, раствора щелочного компонента и мелкого заполнителя, в качестве которого служат мелкие пески и грунты в виде супесей и легких суглинков. Частицы песчаных фракций, активизированные щелочью и частично связанные продуктами гидратации глинистых минералов, равномерно распределенными в их массе, заполняя пустоты в песчаном каркасе, уплотняют структуру бетона. Допустимые соотношения между частицами разных фракций в заполнителе определяют экспериментально с учетом методов приготовления, укладки и обработки изделий. Использование дисперсных заполнителей может привести к появлению усадочных трещин в бетоне. Во избежание этого рекомендуется из дисперсных заполнителей, содержащих глинистые фракции, и шлакощелочного вяжущего изготовлять безобжиговые бетонные гранулы и вводить их в состав бетона. На основе таких гранул и получают конструкционные шлакощелочные бетоны, обладающие повышенной трещиностойкостью. Кроме дисперсных грунтов в бетонах из шлакощелочного вяжущего целесообразно применять мелкозернистые кварцевые пески с Мкр=0,7…1,2. Мелкозернистые шлакощелочные бетоны выпускают классов В10..60. их свойства практически определяются теми же факторами, что и свойства тяжелых шлакощелочных бетонов на крупнозерновом заполнителе. По результатам, полученным в КИСИ под руководством проф. В.Д.Глуховского, в таб. 1.и 2. приведены изменения прочности при сжатии мелкозернистого бетона и рекомендованы оптимальные составы бетона на дисиликате натрия. Таблица 1. зависимость прочности при сжатии мелкозернистого бетона от расхода компонентов Расход, кг/м3 бетона | Наименование щелочного компонента или цемента | Р/Ш* | Жесткость смеси, с | Прочность,Rсж, МПа | Песка Мкр=0,7 | Шлака основного Мс>1 | 1530 1580 1630 1530 1590 1530 | 500 450 400 500 400 500 | Метасиликат натрияКарбонат калияПортландцемент | 0,53 0,54 0,55 0,46 0,47 0,57 | 0,15 0,15 0,15 30..50 30..50 30 | 87 61,5 35,5 47 31,5 11,5 |
Отношение раствора щелочного компонента Таблица 2. составы бетона на дисиликате натрия Расход на 1 м3 бетона | Значение Rсж раствора, МПа, при плотности, кг/м2 | Шлака, кг | Песка,кг | Раствора щелочного компонента, л | 1100 | 1150 | 1200 | 1250 | 1300 | 400 4505 00 | 1600 1550 1500 | 160 178 200 | 19,6 26,2 28,8 | 35,6 48,4 46,7 | 49,6 59,6 67,5 | 60,7 67 71,8 | 70,6 74,7 90,2 |
|