МАТЕРИАЛЫ ДЛЯ УЗЛОВ ТРЕНИЯ


В статье рассмотрены полимеры, которые наиболее часто используются в машиностроении в качестве основы антифрикционных композиционных материалов. Полимерная матрица для узлов трения может быть изготовлена из различных материалов. Все зависит от требований, которые предъявляют к ним, и условий эксплуатации.


 

В настоящее время весьма жестко и придирчиво выбираются материалы для изготовления изделий, работающих в условиях трения. Для того чтобы максимально удовлетворить эксплуатационные требования используют в основном полимерные композиционные материалы, состоящие из полимерной матрицы, модифицирующих добавок и упрочняющих наполнителей.
Следует сказать, что одному и тому же полимеру, используемому в качестве матрицы, в зависимости от добавок, составляющих окончательную композицию, можно придавать как фрикционные, так и антификционные свойства.

Пластмассы обладают комбинациями физико-механических свойств, которые часто наиболее полно отвечают эксплуатационным условиям узлов и деталей машин. К числу таких свойств относятся:
• Малый удельный вес при достаточной прочности. Известно, что пластмассы в 2–3 раза легче алюминия и в 5–8 раз легче стали. Это свойство особенно ценно для создания конструкций летательных аппаратов, транспортных систем, машин и аппаратов специального назначения. Машины становятся значительно легче, уменьшается «мертвый» вес конструкции и возрастает полезная нагрузка.
• Способность воспринимать и выдерживать нагрузки — механические, термические и электроэнергетические — определяется физико-механическими свойствами материала. У некоторых видов пластмасс удельная прочность, то есть нагрузка, воспринимаемая на единицу площади, значительно превышает удельную прочность металлов. Например, некоторые пластики, армированные волокнами, по прочностным свойствам превосходят прочность углеродистой стали в два раза. Кроме того, эти пластики удовлетворительно работают на сжатие и изгиб, тогда как углеродистая сталь таких нагрузок не выдерживает.
• Вибростойкость. Пластмассы — прекрасные амортизаторы вибраций. Они поглощают колебания в 20 раз лучше, чем алюминий, и в 100 раз лучше, чем сталь. Детали, изготовленные из пластмасс, хорошо работают при больших динамических и ударных нагрузках.
• Способность поглощать шумы и звуконепроницаемость — особенно ценные свойства пластмасс как конструкционных материалов. Детали из пластмасс в машинах не только не создают дополнительных шумов, но и сами в какой-то мере поглощают их. Например, при замене металлических быстроходных шестерен на пластмассовые в редукторах почти полностью устраняются шумы.
• Антифрикционные пластмассы обладают низким коэффициентом трения, мало изнашиваются, хорошо выдерживают температуры, возникающие в процессе трения. Кроме того, они способны работать без смазки.

Полиамидные материалы
Наиболее распространенными термопластичными антифрикционными материалами являются полиамиды, как алифатические, так и ароматические. Алифатические полиамиды обладают низким коэффициентом трения (коэффициент трения полиамидов по стали без смазки 0,1–0,2, со смазкой маслом — в пределах 0,05–0,10), достаточно износостойкие, способны работать в интервале температур от –40 до +80°С. К недостаткам полиамидов можно отнести невысокую теплопроводность, низкую несущую способность. Полиамиды не обладают стойкостью по отношению к маслу и влаге.
Для улучшения физико-механических характеристик полиамиды армируют волокнистыми материалами (например, стекловолокном, углеродным волокном и т. д.), для улучшения антифрикционных свойств в полимер вводят твердые смазки (графит, дисульфид молибдена, и т. д.). Они могут применяться как в чистом виде, так и модифицированные добавками и наполнителями.
Ароматические полиамиды относятся к термореактивным материалам. Их применяют для изготовления узлов трения, как в чистом виде, так и с наполнителями: фторопластом, дисульфидом молибдена, графитом и другими смазками. Благодаря высокой механической прочности армировать ароматические полиамиды не нужно, поэтому в них вводят лишь добавки, снижающие коэффициент трения и износ. Детали из этих материалов не только прочные, но и термостойкие. Типичным представителем ароматических полиамидов является фенилон. Детали из фенилона эксплуатируются при температурах от –50 до +200°С. Этот материал химически стоек, может работать в агрессивных средах.

Полиолефины
Другими распространенными материалами для узлов трения являются полиолефины — полиэтилен и полипропилен. Они используются как в чистом виде, так и в композициях с различными наполнителями. Полиолефины в чистом виде обладают хорошими эксплуатационными свойствами в пределах температурных нагрузок до +60°С. Свыше этой температуры из-за невысокой теплопроводности они в нагруженном режиме работать не могут. Это ограничивает область их применения в качестве антифрикционных материалов. Для повышения работоспособности будущих изделий в полимер вводят армирующие наполнители, повышающие его прочность, а также добавки, снижающие коэффициент трения, износ и температуру в зоне трения. При этом коэффициент трения у модифицированных полиолефинов может быть ниже 0,1. Компоненты, добавляемые к такой композиции, стандартны, однако существенно повысить температурную работоспособность материала крайне трудно (максимум на 20%), а подчас невозможно. Поэтому полиолефины применяют в слабонагруженных узлах, работающих в относительно мягких условиях эксплуатации.

Таблица 1. Физико-химические свойства полиамидов и полиолефинов
Материал Плотность, г/см3 Прочность при сжатии, МПа Ударная вязкость, кДж/м2 Твердость по Бринеллю
Полиамид 6 1,10 85 120 110
Полиамид 610 1,10 90 100 130
П-12А 1,02 60 90 75
Капролон-В 1,15 110 140 140
Фенилон П 1,33 320 20 180
Фенилон С1 1,33 220 20 180
Фенилон С2 1,33 220 35 220
Полиэтилен высокого давления 1,40–2,50 12 14–25
Полиэтилен низкого давления 4,50–5,80 27 2–150 45–60
Полиэтилен среднего давления 5,60–6,50 7–120 60–80
Полипропилен  60 33–88 40–70

 

Узлы трения из поликарбоната
Поликарбонат используется не только для производства листов и тары, но и для изготовления антифрикционных изделий. Он идеально подходит для работы в условиях низких и сверхнизких температур, вплоть до криогенных. Изделия из поликарбоната эксплуатируются в среде жидкого азота, водорода и гелия при температурах до –253°С. Поликарбонат, как известно, обладает высокой ударной прочностью и стабильностью размеров деталей, малой ползучестью. Эти свойства являются одними из определяющих для его применения в узлах трения, работающих при ударных нагрузках. Однако следует заметить, что поликарбонат плохо сопротивляется циклическим воздействиям нагрузки и имеет низкую усталостную прочность. Материал устойчив к ультрафиолетовому излучению и резким перепадам температур, но не стабилен по отношению к действию ионизирующего излучения. Для снижения коэффициента трения и повышения износостойкости в поликарбонат вводят специальные наполнители и твердые смазки. Введение дисульфида молибдена (Эстеран-29, Эстеран-51), графита (ДАК-УП5Д) или 15–20% фторопласта (ДАК-8) снижает коэффициент трения в 2–3 раза, наполнение поликарбоната стекловолокном и фторопластом (Дифлон) придает изделиям из такой композиции высокие физико-механические и диэлектрические свойства.

Таблица 2. Свойства наполненного поликарбоната
Марка материала Плотность, г/см3 Прочность при сжатии, МПа Ударная вязкость, кДж/м2 Предельная рабочая температура, °С Коэффициент трения
Эстеран-29 1,30 6 110 0,25
Эстеран-51 1,25 60 150 110 0,24
ДАК-УП5Д 1,25 90 - - 0,23
ДАК-8 1,24 55 87 115 0,20
Дифлон 1,20 90 - - 0,30


Термопластичные материалы на основе полиарилатов
Полиарилаты также относятся к антифрикционным термопластам. Они способны стабильно работать при высоких температурах — 160–180°С, а кратковременную работу выдерживают при 230°С. Такие диапазоны для термопластов весьма высоки. Наряду с теплостойкостью полиарилат обладает высокой сопротивляемостью ионизирующим излучениям, хорошими диэлектрическими свойствами, химической и морозостойкостью (может эксплуатироваться при температуре до –100°С). В чистом виде полиарилаты имеют нестабильные триботехнические характеристики, для их стабилизации в материал вводят такие добавки как фосфор, дисульфид молибдена, медь. Это приводит к уменьшению коэффициента трения (у чистых полиарилатов коэффициент трения высокий, примерно 0,4) и снижению износа.

Пентапласт
Этот полимер гораздо реже используется в качестве антифрикционного материала для узлов трения. Он химически стоек и применяется для изготовления деталей, работающих в агрессивных средах. Из пентапласта можно получать различного рода уплотнители, так как он обладает небольшой усадкой. Работоспособность материала стабильно сохраняется в интервалах температур 120–130°С. По этому показателю пентапласт превосходит полиолефины. Его используют как в чистом виде, так и в комбинации с наполнителями: стекловолокном, слюдой, окисью хрома, графитом. Коэффициент трения чистого материала составляет 0,12.

Таблица 3. Свойства пентапласта в комбинации с наполнителем
Наполнители Плотность, г/см3 Прочность при растяжении, МПа Модуль упругости, кПа Твердость по Бринеллю
Слюда (15%) 1,52 63 2,42 139
Стекловолокно (10%) 1,45 67 2,11 123
Окись хрома (15%) 1,60 56 1,34 98
Графит (10%) 1,50 53 2,20 100


Полимерный материал, стоящий отдельно от термопластов и реактопластов
Фторопласт имеет самый низкий коэффициент трения (коэффициент трения фторопласта-4 составляет 0,03–0,05). Он обладает высокой химической стойкостью, способен работать в диапазоне температур от –250°С до 300°С. Несмотря на это, фторопласт в чистом виде применяют весьма ограниченно. Это объясняется его низкой прочностью и небольшой твердостью, что в свою очередь приводит при трении к деформированию его поверхностных слоев. В результате деталь изнашивается достаточно быстро.

Использование полимеров в машиностроении демонстрирует универсальность и преимущества этих материалов для деталей машин и механизмов


В машиностроении используются в основном композиционные материалы на основе фторопласта. Для увеличения несущей способности изделий в фторопласт вводятся армирующие волокнистые наполнители, металлический порошок, кокс, и т. д. Кроме того, введение наполнителей позволяет значительно снизить интенсивность изнашивания фторопласта. Широко практикуется нанесение фторопласта в виде покрытий на более твердые и прочные поверхности.
 

Антифрикционные композиционные материалы на основе полиимидов
Эти материалы обладают высокой радиационной и химической стойкостью, хорошими триботехническими свойствами и могут длительно эксплуатироваться при температуре 220–260°С. Материалы на основе полиимидов удовлетворительно работают в условиях высокого вакуума (до 10-4 Па). Детали узлов трения из полиимидов получают горячим прессованием. Они имеют малую усадку (0,7–1,0%), что дает возможность использовать полиимиды для изготовления деталей высокой точности. Недостатком этих материалов является большая скорость газовыделения и хрупкость, что несколько ограничивает их применение. Для изготовления пористых изделий, например, подшипников, к полиимиду добавляют полиформальдегид. Добавление внутренних смазок позволяет снизить коэффициент трения композиции до 0,1 при допустимом контактном давлении 350 МПа.

Таблица 4. Свойства композитов на основе фенолоформальдегидных смол
Армирующие наполнители Плотность, г/см3 Прочность при изгибе,МПа Ударная вязкость, кДж/м2 Коэффициент трения
Базальтовые волокна 1,71 93 40 0,15
Стеклянные волокна 1,90 60 10 0,35
Углеродные волокна 1,45 70 44 -
Древесные волокна - 78 9 0,22

Фенолоформальдегдные смолы
Как правило, такую полимерную матрицу упрочняют волокнистыми наполнителями, а также вводят внутренние смазки. Изделия на основе фенолоформальдегидов обладают химической стойкостью, высокой жесткостью, стабильностью размеров, высокой износостойкостью. Как и большинство реактопластов, изделия на основе этих смол способны стабильно эксплуатироваться при температурах до 180°С. Смолы в чистом виде практически не используются. Из них готовят композиты, состоящие из армирующих наполнителей и внутренних смазок. Содержание добавок в композите может составлять до 70%.

Таблица 5. Свойства антифрикционных материалов на основе полиимидов
Марка материала Плотность, г/см3 Прочность при сжатии, МПа Ударная вязкость, кДж/м2 Твердость по Бринеллю Предельные рабочие температуры, °С
Полиар-2 1,30 50 140 -196, +300
Тесан-38 1,30 30 140 -196, +250
ПМ-69-Г5 1,47 80 30 320 -196, +250
ПАМ 50-69 1,55 38 5 300 -196, +250

На основе вышеизложенного можно сказать, что полимерная матрица для узлов трения может быть изготовлена из различных материалов. Все зависит от требований, которые предъявляют к ним, и условий эксплуатации.

Автор: Артем Третьяков
Источник: Полимеры-Деньги