Ускорители схватывания и твердения бетонов (Часть 1)


Тема ускорителей в современной технологии бетона чрезвычайно скандальна, умышленно запутанная и заангажированая самими производителями и продавцами хим. добавок.


 

В первую очередь данное положение вещей обусловлено тем, что с помощью ускорителей можно достаточно легко, просто и дешево существенно модифицировать технологическую производственную цепочку. А это деньги, большие деньги. А так как деньги любят тишину, продавцы хим. добавок стараются её соблюдать, особенно не распространяясь на тему ускорителей. Гораздо охотней они популяризируют и пропагандируют свои полифункциональные составы вообще, хотя немалую часть успеха следует, по праву, отдать удачно подобранным в их составах ускорителям.

Так для тяжелых бетонов весьма критичный параметр – время оборачиваемости дорогостоящей формоснастки, становится возможным модифицировать не по пути затратной и энергоемкой тепловлажностной обработки, а “подстегивая” кинетику набора прочности химическим путем.

В легких бетонах, и в частности в пенобетонах, с помощью ускорителей удается минимизировать влияние минералогии, тонины помола и длительности хранения цемента на качество продукции, “выпередить” осадку свежеприготовленной пенобетонной матрицы ускоренным набором её прочности.

Как это ни парадоксально, но именно тема ускорителей – краеугольный камень также и экономики полифункциональных модификаторов. Простейшая композиция подобного рода состоит как минимум из двух компонентов, - обычно это пластификатор второй (реже третьей) группы эффективности и какой либо ускоритель, либо специально подобранная смесь ускорителей, обеспечивающих аддитивность (или даже синергизм) компонентов. Элементарный рецептурно-экономический анализ показывает, что стоимость именно ускорителя и является основным ценообразующим фактором таких полифункциональных составов. Иными словами, - кто “сидит” на дешевых ускорителях – тот владеет рынком полифункциональных добавок. Даже “легкая техногенность” (а порой и не легкая) некоторых составов не является преградой для их массового применения – критерии экономической целесообразности перевешивают.

Из этой же оперы и разразившиеся недавно на Украине баталии по степени применимости тех или иных полифункциональных модификаторов для бетонов в строительной индустрии. Все как у людей – с поливанием друг друга грязью в СМИ, научными и псевдонаучными отписками, подметными письмами, привселюдном полоскании грязного белья и проч.

С одной стороны это свидетельствует, что производство полифункциональных составов на Украине уже выросло из детских штанишек - защищая собственную песочницу, малышня уже не хнычет, а раздает зуботычины.

С другой стороны общая культура подобных склок с ярко выраженной экономической подоплекой свидетельствует, что её участники еще недостаточно четко понимают, зачем им эта песочница вообще нужна. Тяжелая артиллерия в виде центральных СМИ требует бережного и грамотного обращения. Поливая друг друга из ушата, нужно не расплескивать грязь на простого обывателя, абсолютно не посвященного в тонкости и предысторию подковёрной борьбы. Иначе потенциального будущего покупателя, очень легко превратить в затурканного и запуганного перестраховщика, который при слове “хим. добавка” будет осеняться крестным знаменем.

(И не следует тешить себя надеждами, что папик-Мапик так и будет сидеть в сторонке, на лавочке, и созерцать, как дети делят песочницу. Как только допьет свое пиво, он накостыляет малышне и заберет все игрушки. Самые сообразительные получат их обратно – если станут бегать ему за пивом.)
 

Основные ускорители схватывания и твердения, применяемые в бетонных композициях
Ускорителей схватывания и твердения цементных композиций много. Существует несколько их классификаций, основанных на механизме действия на гидратацию цемента. Если же провести разделение по узко химической принадлежности, то к ускорителям можно отнести следующие вещества (курсивом выделены гостированные ускорители):

Углекислые соли
Калий углекислый (поташ) – K2CO3
Натрий углекислый (сода) - Na2CO3
Сернокислые соли
Натрий сернокислый – Na2SO4
Натрий тиосульфат + натрий роданид (Na2S2O3 + NaCNS)
Гипс – CaSO4
Нитраты
Кальций азотнокислый Ca(No3)2
Натрий азотнокислый – NaNo3

Аммонийные соли
Карбамид (мочевина)– CO(NH2)2

Соли фосфорной кислоты
Тринатрийфосфат
Силикаты
Силикат натрия (растворимое стекло) – Na2O х SiO2 + nH2O
Хлориды
Алюминий хлористый – AlCl3
Железо хлористое – FeCl3
Барий хлористый – BaCl2
Магний хлористый – MgCl2
Кальций хлористый – CaCl2
Натрий хлористый – NaCl

Кислота соляная - HCl
Кэл – (хлорокись кальция)
Механические смеси различных ускорителей
Нитрит-нитрат кальция (ННК)
Нитрит-нитрат-хлорид кальция (ННХК)

Нитрит-нитрат-хлорид кальция + мочевина (ННХКМ)
Сода+поташ+поластификатор


Из всего этого перечня наиболее распространёнными и наиболее эффективными остаются хлориды и смеси на их основе. Высочайшая эффективность при низкой цене – залог их популярности во всем мире. Проводимая в последнее время антирекламная кампания по отношению к хлоридам не имеет ничего общего с действительным положением вещей. Её первопричина как раз и кроется в низкой стоимости хлоридов. А “обыгрывание” факта, что, дескать, хлориды корродируют арматуру, для множества видов бетонов не то что спорно, но и просто некорректно, свидетельствует об отсутствии здравого смысла и элементарных знаний у потребителей. О какой коррозии, скажите на милость, может идти речь в пенобетонных технология, в производстве элементов мощения, бетонных блоков и т.д., где арматуры нет вообще?

Продавать, а тем более завозить из-за рубежа, пусть даже и высокоэффективные, но дешевые составы, коими являются хлоридные ускорители, и в первую очередь хлориды кальция и натрия, экономически нецелесообразно. Тем более что их распространенность в природе настолько высока, что в любой стране мира своих предостаточно.


Углекислые соли.

Натрий углекислый.
Об ускоряющем действии соды (углекислого натрия Na2(СO3) на цемент, известно уже давно. Еще в 1903 г. академик Байков А.А. – основоположник теории твердения цементов, в своих работах упоминал о соде, как о соли, вызывающей чрезвычайно быстрое схватывание (см. Таблица 631-1)

Таблица 631-1
 

Изменение сроков схватывания при добавках соды.

Добавка соды в % от веса цемента

Начало схватывания (час – мин)Конец схватывания (час – мин)
01 – 405 – 05
20 – 050 – 45
50 – 030 - 17


Из этой таблицы видно, что сода чрезвычайно активно и “резко” ускоряет процессы схватывания цементов. Это обстоятельство сильно затрудняет работы с бетоном при добавках соды и может привести к значительному снижению прочности, т.к. не всегда возможно успеть уложить массу бетона в формы до начала схватывания.

Ускорение твердения бетонов и растворов в раннем возрасте при добавках соды происходит за счет окончательной прочности, так что по истечении определенного времени прочность бетона без добавки соды оказывается уже выше прочности бетона с добавками (см. Таблица 631-2).

Таблица 631-2


Влияние добавок соды на прочность в кг/см2 цементно-песчаного раствора пропорции 1:3 и В/Ц=0.58

Возраст раствора в днях

Добавка соды
0%2%6%10%
310.613.529.126.9
524.225.633.425.2
2864.264.262.860.8


Данные этой таблицы говорят о том, что в то время как в возрасте трех-пяти дней добавка увеличивает прочность, в возрасте 28 дней уже имеется налицо снижение относительной прочности у образцов с добавкой по сравнению с образцами без добавки.
Все эти данные однозначно свидетельствуют, что сода может найти применение в строительных технологиях только в тех случаях, когда необходимость получения быстросхватывающегося и быстротвердеющего бетона или раствора может быть оправдана относительным снижением последующей прочности, что может иметь место при всякого рода аварийных работах. И то только в отсутствии более эффективных ускорителей схватывания (смотри далее).
 

Поташ
Человек давно заметил, что внесение в почву золы приводит к увеличению урожайности. О том, что ее активным началом является карбонат калия K2CO3 – поташ, стало ясно гораздо позже. До разработки промышленных способов производства соды поташ играл исключительно важную роль в различных производствах: стекольном, текстильном, мыловаренном и др. Его получали сжиганием древесины, обработкой водой золы с последующим выпариванием водного раствора. Из золы сожженного 1 м3 вяза получали 0,76 кг поташа, ивы – 0,63, липы – 0,50 кг. В России лес бездумно сжигали на поташ до середины XIX в. Содержание калия в золе от сгоревших растений обычно очень высокое: в золе соломы злаков от 9 до 22%, гречишной соломы – 25...35, стеблей подсолнечника 36...40, торфа 0,5...4,7%. Само слово “поташ” произошло от древнего немецкого “пот” – горшок и “аш” – зола, так как щелок, получающийся при обработке золы водой, выпаривался в горшках.

В XVI - XVII вв. поташ получали в огромных количествах из древесной золы, которую вываривали в больших котлах. Из поташа приготавливали главным образом литрованную (очищенную) калийную селитру, которая шла на изготовление черного пороха. Особенно много поташа производилось в России, в лесах вблизи Арзамаса и Ардатова на передвижных заводах (майданах), принадлежавших родственнику царя Алексея Михайловича, ближнему боярину Б.И.Морозову. Такие заводики вырабатывали до 770 тн. поташа в год.

В тот же период, производство поташа на Украине было менее концентрировано и сильней рассредоточено – каждый уважающий себя “заможный” казак почитал за честь иметь собственный микрозаводик по его производству – технология то элементарнейшая, и чрезвычайно доходная.

Сегодня поташ применяется главным образом в получении моющих средств (жидкое мыло). Он также служит сырьем при производстве тугоплавкого стекла и хрусталя и в качестве компонента во множестве химических технологий.

Применение поташа в строительстве обусловлено, в первую очередь, особенностями гидратации цемента. При пониженных температурах она сильно замедляется, а на морозе прекращается вообще. Добавка поташа помогает устранить этот недостаток – строить становится возможным даже при -50оС. Поэтому поташ является традиционной противоморозной добавкой-антифризом в строительстве.

В водной среде поташ мгновенно гидролизуется образуя очень сильную едкую щелочь. Она портит одежду и обувь, при попадании на открытые участки тела образует язвы, в глаза – верную потерю зрения. Широкое применение поташа в СССР в качестве противоморозной добавки было обусловлено, в том числе, и пренебрежениями техникой безопасности – сами знаете, кто весь Крайний Север и Восточную Сибирь у нас построил.

С пуском Ачинского глиноземного комбината содо-поташная смесь (отход основного производства) стала местной для Восточной Сибири, а её применение приобрело массовый характер. Сибирские морозы замедляли гидратацию цемента, поташ ускорял её. В итоге они компенсировали друг друга.

При положительных температурах ускоряющие свойства поташа выражены настолько сильно, что без соответствующего их замедления химическим путем работать становится абсолютно невозможно – бетон схватывается прямо в бетономешалке. Оригинальный выход был найден Красноярскими учеными из местного филиала Промстройниипроекта. Они предложили добавлять к поташу пластификатор с ярко выраженным замедляющим эффектом. Наиболее подошел для этих целей технический лигносульфонат – бросовый отход лесохимического производства. В итоге получили бетонные смеси повышенной пластичности с ярко выраженным ускоряющее/противоморозным эффектом, но без излишнего ускорения схватывания.

Если даже не касаться техники безопасности, то и так в методологии применении поташа сплошные НЕЛЬЗЯ.

Нельзя применять в составе бетонов и растворов, где есть активный кремнезем, где возможен контакт с известью и силикатным кирпичом; нельзя применять для изделий эксплуатирующихся при повышенной влажности. Поташ мало эффективен в крупнопористых и беспесчаных бетонных смесях, а также в легких бетонах типа керамзитобетона. Поташ не рекомендуется к применению в условиях положительных температур либо колебания температуры с переходом через 0оС. Поташ разрушает изоляцию проводов, поэтому его нельзя применять в местах, где будет проложена скрытая электропроводка.

Из-за ярко выраженной щелочной реакции следует остерегаться попадания поташа на кожу и особенно в глаза. Приготавливать и работать с водными растворами поташа следует в комбинезоне, очках, резиновых сапогах и перчатках, спецодежду хранить в специальных шкафах. В плохо вентилируемых помещениях необходимо использовать респираторы и противогазы.

На днях беседовал с технологом одной из фирм – производством тротуарных камней занимаются, - жаловалась на используемую ими российскую комплексную добавку, искала достойную замену. Всем, мол, хороша – и пластифицирует отлично, и ускоритель распрекрасный и дёшева. Одно НО – рабочие отказываются с этой добавкой работать. У самой все руки в язвах, а её помощница, молодая девушка, уволилась вообще с формулировкой “Мне еще детей рожать…”. Что сокрывалось за торговым наименованием этой добавки она не знала, но подозревала нехорошее. И не зря, после нескольких моих уточняющих вопросов стало вполне очевидно, что давно известную ССП (сода+поташ+пластификатор) “переименовали” и “районировали” для условий теплой Украины. После того как она узнала, что произойдет вскоре с их тротуарными камнями, она вообще в ужас пришла.

Воздействие поташа на основные минералы цементного клинкера на стадии схватывания.

Одной из причин, препятствующей широкому применению поташа в качестве ускорителя схватывания и твердения, является вызываемое им очень быстрое схватывание цемента. Для большинства портландцементов, его добавка вызывает начало схватывания уже через 10 – 15 минут, что фактически исключает централизованное приготовление бетонов и растворов с добавкой поташа. Степень влияния поташа на отдельные минералы цементного клинкера отражены в Таблице 6321-1

Таблица 6321-1


Влияние добавки поташа на сроки схватывания основных минералов цемента

Минерал

Добавка поташа в % от массы минералаНачало схватыванияКонец схватывания
час - мин%час - мин%
C3S02 - 051003 - 10100
20 - 40320 - 5529
50 - 47370 - 6031
71 - 17621 - 3248
112 - 201123 - 15102
C3S02 - 251003 - 00100
20 - 45311 - 0536
51 - 30621 - 5061
71 - 48742 - 1877
101 – 10481 - 4056
С3А00 - 011000 - 18100
30 - 011000 - 0528
70 - 011000 - 0528
100 - 011000 - 0528
150 - 011000 - 0528
C4AF00 - 201000 - 30100
20 - 201000 - 2273
40 - 16800 - 1964
60 - 12600 - 1343
8.50 - 09450 - 1033

Как видно из этой таблицы, ускоряющее действие поташа на схватывание всех основных минералов проявляется уже в малых дозировках.

Особенно критичен к воздействию поташа трехкальциевый алюминат. Его схватывание и так начинается практически мгновенно, с момента затворения. Отрегулировать длительность схватывания этого минерала помогает добавка гипса, вводимая при помоле. Но в присутствии даже незначительных добавок поташа этот механизм нарушается – в присутствии поташа образуются гидрокарбоалюминаты кальция, которые обволакивают зерна S3A и снижают активность иона SO4 из состава гипса-замедлителя.

Причиной сокращения сроков схватывания силикатов кальция служит образование при взаимодействии поташа с известью нерастворимого CaCO3 что способствует протеканию реакции в сторону образования извести, снова вступающей во взаимодействие с ионом CO3 с образованием CaCO3 и т.д.

Для замедления схватывания бетонов с добавками поташа были опробованы множество веществ-замедлителей – водорастворимые фосфаты, окись цинка, муравьиная и бензойные кислоты, жирные кислоты, глицерин, глюкоза, технические лигносульфонаты.
По совокупности полученных результатов, в качестве эффективного замедлителя схватывания бетонов с добавкой поташа, было предложено использовать ЛСТ (технические лигносульфонаты). Помимо замедляющего эффекта ЛСТ оказывает на бетоны ярко выраженное пластифицирующее воздействие. Но в дозировке свыше 0.3% от массы цемента их уже практически не используют – уж слишком сильно начинает сказываться наличие в ЛСТ примесей – редуцированных сахаров, которые сильно замедляют схватывание и твердение. В комплексе с таким эффективным ускорителем схватывания, как поташ становится вполне возможным повысить дозировки ЛСТ до 0.5% - т.е. ускоритель (поташ) и замедлитель (ЛСТ) взаимно нивелируются, при этом пластичность бетона повышается.

Воздействие поташа на основные минералы цементного клинкера на стадии твердения.
Трехкальциевый силикат (C3S) – наиболее активный минерал цемента. Он характеризуется высокой прочностью и быстрым её нарастанием. Введение поташа интенсифицирует процесс твердения, но затем, начиная с 7-дневного возраста, и во все последующие сроки, прочность этого минерала, с добавкой поташа, становится несколько ниже, чем без добавки.

Поташ резко ускоряет твердение двухкальциевого силиката (C2S). Увеличение прочности образцов по сравнению с контрольными пропорционально количеству добавки. В дозировке 10 – 15% поташа, прочность образцов превышает прочность эталона в 2.5 – 4.0 раза и, начиная с 3=месячного возраста, по абсолютным значениям приближается к прочности образцов трехкальциевого силиката, затворенных на чистой воде.

Затворение трехкальциевого алюмината (C3A) на растворах поташа приводит к значительному повышению прочности.

Изменение прочности четырехкальциевого алюмоферита (C4AF) зависит от количества вводимого вместе с водой затворения поташа. Наиболее оптимальной является добавка в 3%

В начальный период твердения наиболее эффективными являются повышенные дозировки добавки поташа. Но с увеличением возраста становятся оптимальными дозировки в 7% и менее.


Таблица 6322-1


Минералогический состав исследованных цементов

№ клинкера исследованных цементов

Расчетный минералогический состав, %
C3SC2SС3АC4AF
I36,436,414,68,2
II66,010,04,017,0
III10,068,03,616,3
IV53,020,011,011,0
V56,520,55,014,0


Примечание: Использованы 5 типовых цементов, по своему минералогическому составу, наиболее характерных для цементной промышленности Украины и России.


Таблица 6322-2

Прочность растворов на цементах различного минералогического состава, с добавкой поташа.

№ цемента

Добавка поташа в %, от массы цементаВ/ЦПрочность при сжатии в кг/см2 в возрасте (дней)
37142890
I-0,6048607595125
30,607590105157170
70,60130130130165195
100,44125125125155180
150,44120120145170200
 
II-0,44130170170225225
30,44150165165185185
70,44150150155185185
100,44150150155180195
150,44150150155180180
 
III-0,44405792122145
30,446583105112160
70,445680107112150
100,445780107112145
150,447180110112150
 
IV-0,44152184206200255
30,44150150150155187
70,44155155155155217
100,44155155155155202
150,44120137155155217
 
V-0,4490135165180200
30,4495122152165170
70,4490120140150165
100,44100120140150165
150,44100105135150160

Примечание: Для испытания был использован цементно-песчаный раствор пропорции 1:3
Температура твердения - + 20оС


Таблица 6322-3


Содержание поташа в растворах и их плотность

Концентрация раствора, %.Плотность раствора при 20оС, г/см3Температурный коэффициент плотности раствораСодержание безводного ХН в 1 литре раствора (кг)
41,0350,000270,041
81,0730,000330,086
121,1100,000370,123
161,1490,000410,184
201,1900,000440,238
221,2110,000460,266
241,2320,000470,296
261,2540,000490,326
281,2760,000500,357
301,2980,000510,390
321,3210,000520,423
341,3440,000530,457
361,3670,000530,492
381,3900,000540,528
401,4140,000550,566


 

6.4. Силикат натрия
Растворимое стекло (натриевое) так же как и сода, сильно ускоряет процессы твердения цементов. Растворимое стекло представляет собой коллоидный раствор натриевых силикатов в воде. Существует и аналог натриевому – калиевое стекло, но оно гораздо реже встречается. По своему воздействию на цементные композиции натриевое и калиевые растворимые стекла аналогичны.

Достаточно достоверные сведения об изготовлении первого растворимого стекла имеются уже в трудах средневековых алхимиков (1520 г.). Но только в 1818 г. немецкий ученый Йоган Фукс научно обосновал химию и физику его получения. По результатам его трудов в 1826 г. был построен первый завод по производству растворимого стекла. С этого момента и началось его широкое применение в различных отраслях промышленности.

Химический состав натриевого растворимого стекла может быть выражен формулой:

Na2O x nSiO2 + mH2O

Из неё видно, что оно (растворимое стекло) не имеет постоянного состава, и соотношение между отдельными составными частями может меняться. Отношение: SiO2 : Na2O = M, показывающее, сколько кремнекислоты приходится на единицу окиси натрия, называется силикатным модулем стекла. Величина его обычно колеблется в пределах от 2.2 до 3.5. Чаще всего производится и встречается стекло с модулем 2.6 – 2.8.

Количество воды может быть самым неопределенным. В зависимости от этого в коллоидном растворе растворимого стекла меняется его консистенция – “плотность”, измеряемая градусами шкалы Боме или показаниями удельного веса. Заводы обычно отпускают растворимое стекло плотностью 40 – 50оBe (плотностью 1.38 – 1.50), и затем на месте работ оно разбавляется водой до нужной концентрации.

При добавлении растворимого стекла к воде, идущей на затворение цемента, его сроки схватывания сильно сокращаются (см. Таблица 64-1). Обусловлено это тем, что в результате химической реакции между щелочным силикатом (жидкое стекло) и составными частями цементного клинкера (гидроалюминат кальция) образуются коллоидные гидросиликат кальция и алюминат натрия по уравнению:

3Na2O x SiO2 + 3CaO x Al2O3 x nH2O = 3CaSiO3 x nH2O + 3Na2O x Al2O3

Именно образующийся в составе бетона алюминат натрия и является очень сильным ускорителем его схватывания.

Кроме того, проходит еще одна реакция, между жидким стеклом и известью, находящейся в цементе c образованием силиката кальция:

Na2O x 2SiO2 + CaO = Na2O x SiO2 + CaSiO3

Силикат кальция очень прочный и плотный материал. Пористый кусок, например, негашеной извести, обработанный раствором жидкого стекла, становится настолько плотным и прочным, что его можно полировать. Отлагаясь в порах твердеющего камня, силикат кальция, придает ему повышенную плотность и водонепроницаемость.

Вот эта совокупность свойств – ускорение схватывания бетона от образования алюмината натрия и пониженная проницаемость порового пространства, за счет кольматирующего действия силиката кальция и обусловило очень широкое применение жидкого стекла в качестве добавки для получения водонепроницаемого бетона для аварийных работ – заделка протечек, зачеканка швов и т.д.

Таблица 64-1
 

Влияние добавки растворимого стекла на сроки схватывания цемента.

 

Добавка растворимого стекла в % от массы цемента

Начало схватывания (час – мин)Конец схватывания (час – мин)
01 – 405 – 05
21 – 023 – 10
50 – 382 - 47


О характере влияния растворимого стекла на прочность, можно судить из Таблицы 64-2

Таблица 64-2


Влияние добавок растворимого стекла на прочность в % от бездобавочного

Возраст в сутках

Добавка растворимого стекла
0%4%8%12%16%
7100108108157.6131,5
2810076.676.674.472.5


(для цементно-песчаного раствора пропорции 1:3 и В/Ц=0.58)

 

Как и в случае с содой, растворимое стекло, как ускоритель твердения цементов, находит применение только в исключительных случаях, когда получить высокую начальную прочность важнее, чем высокую последующую, 28-ми суточную (марочную).
Нужно также обязательно отметить, что растворимое стекло часто бывает непостоянным как по хим. составу так и по плотности. Проконтролировать этот показатель, хотя бы частично, поможет Таблица 64-3

Таблица 64-3

Зависимость удельного веса растворов жидкого стекла от процентного содержания растворенного силиката

Состав

(в %)
Содержание растворенного силиката, %оВе(градусы Вёме)Удельный вес(г/см3)Силикатный модуль жидкого стекла
Na2ОSiO2
0,641,051,692,31,00611,69
1,903,135,038,01,0584
4,046,6510,6914,01,1069
6,029.9115,9320,41,1673
10,1416,7026,8433,21,2970
12,0419,8231,8639,21,3705
13,0021,4034,4041,71,4037
13,9322,9436,8744,41,4414
     2,06
2,995,988,9711.11,0829
4,509.0013,5017,01,1328
6,0612,1218,1822,01,1789
8,4316,8625,2930,51,2664
9,3818,7628,1433 71,3028
10,5321,0631,5933,71,3426
11,1222,2433,3638,81,3653
11,5523,1034,65.40,31,3849
12,0124,0236,0341,61,4023
12,4324,8637,2942,81,4188
12,8925.7838,6744.51,4428
17,2034.4051,6055,61,6219
18,4236,8455,2658,81,6821
     2,40
0,521,211.732,11,0147
1,032,413,444,41,0313
3,027,0610,0812.41,0935
4,9911,6616,6520,01,1600
     2,44
8.2919,6427.9332,31.2866
9,2521,9231,1735,71,3266
10,2024,1734,3739,81,3783
10,8225,6436,4641,21,3969
11.4027,0038,4043,11,4230
11.9828,3940,3745,21,4629
     3.36
0 551,802,352,61,0183
2.066,728,789.91,0733
3,039,8912,9214,81.1499
4,0313,1517,1818,91,1137
5,0816,5821,6623,51,1934
5,9719,4925,4628,11,2404
6,4921,1827,6730,41,2653
6,8822,4629,3432.01,2832
7,4724,3831,8534,91,3170
8,0426,2434,2837,41,3476
     

6.4.1 Пенобетон на основе жидкого стекла.
Жидкое стекло, в качестве вяжущего используется для получения прочных теплоизоляционных материалов способных работать при повышенных эксплуатационных температурах до +800оС. Это очень ценное и важное свойство делает его незаменимым для теплоизоляции различных высокотемпературных трубопроводов на силовом и паросиловом энергетическом оборудовании.

В качестве пенообразователя вполне подходит обыкновенное хозяйственное мыло. Наполнителем могут выступать две форма кремнезема – кристаллического SiО2 (обыкновенный песок) и аморфного SiO2 (тонкомолотое стекло, минеральная вата и т.д.).
Для изготовления жаростойкого пенобетона потребуется также натриевое жидкое стекло плотностью 1.3 – 1.45 г/см3 с силикатным модулем 2.45 и выше. В качестве отвердителя выступает кремнийфтористый натрий в виде технического порошка. Заполнитель – песок молотый до удельной поверхности в 4500 см2/г или минеральная вата.
Приготовление пенобетона на жидком стекле заключается в перемешивании жидкого стекла, отвердителя (кремнийфтористого натрия) с заполнителями и отдельно приготовленной пеной.

Твердеет он в естественных условиях при температуре более 5оС в течении 1 – 2 суток. При низкотемпературной сушке при температуре 60 – 80 оС процесс твердения сокращается до 10 часов.

Физико-механические свойства жидкостекольного пенобетона можно гибко менять, варьируя концентрацию мыльного раствора (см. Таблица 641-1)

Таблица 641-1

Составляющие пенобетона, расход на 1 литр смеси

Концентрация хозяйственного мыла в пенообразователе, %

Плотность получаемого пенобетона кг/м3Прочность на сжатие пенобетона кг/см2
1043113.4
2038012.5
3030010.0
4031011.0
503069.5
603089.0
703017.4
803048.0
903086.0
1003005.5


Все составы изготавливались по следующей рецептуре:
- натриевое жидкое стекло плотностью 1.34 г/см3 250 гр.
- кремнийфтористый натрий 50 гр
- молотый песок 150 гр
- пенообразователь 36 см3


Пенобетон на жидком стекле достаточно прочен. При одинаковой плотности он получается даже прочней автоклавного газосиликата. Ни один другой вид пенобетона, на цементной основе не может похвастаться подобным (см. Таблица 641-2)


Таблица 641-2

Зависимость прочности пенобетонов различного вида

Средняя плотность пенобетона кг/м3

Прочность пенобетона в кг/см2
Пенобетон на жидком стеклеЯчеистый газосиликат
1000.9-
2003.8-
30010-
4002215
5003925
6005833
7007450
8009272
90011098

Коэффициент теплопроводности пенобетона на жидком стекле, определенный методом постоянного источника тепла. Приведенные в Таблице 641-3 данные свидетельствуют, что теплопроводность пенобетона зависит не только от средней плотности, но и от строения веществ, входящих в его состав. При средней плотности в 200 кг/м3 коэффициент теплопроводности на аморфных формах кремнезема (тонкомолотое бутылочное стекло, минеральная вата) ниже, чем на кристаллических (молотый кварцевый песок) и составляет соответственно 0.066 и 0.071 Вт/(м х оС).

Таблица 641-3


Теплопроводность пенобетона на жидком стекле в зависимости от плотности и вида заполнителя.

Вид пенобетона

Средняя плотность,кг/м3Коэффициент теплопроводности,Вт/(м х оС).Изменение теплопроводности, пенобетона по отношению к пеностеклу (Δλ), %
пенобетон на жидком стеклепеностекло равной плотности из расплава(по СНиП, для сравнеия)
Пенобетон на основе жидкого стекла с наполнителем из кристаллического SiO2 (молотый песок)1000.051--
1500.062--
2000.0730.0697+ 4.7
2500.0810.0810
3000.0930.0930
3500.1090.102+ 6.9
4000.1300.116+ 12
 
То же, наполнитель – аморфное SiO2 (молотое бутылочное стекло, мин. вата)2040.0660.0697- 5.3
2400.0700.079- 11.4
2600.0720.0837- 13.9

Термическую стойкость пенобетона на жидком стекле проверяли на образцах кубах с ребром размером 7.07 см.

Образцы нагревали при 720оС в течении 45 минут, затем извлекали из печи, охлаждали до 30 – 40 оС в потоке воздуха температурой 0оС и снова помещали в печь. До разрушения образцы выдержали 12 циклов смены температуры.

Предельная температура начала деформации образцов-цилиндров диаметром 36 и высотой 50 мм под нагрузкой 0.5 кг/см2 составила 760оС. Таким образом, пенобетон на жидком стекле может быть использован при температуре до800оС.

 


C текущей ситуацией и прогнозом развития российского рынка цемента и газобетона можно познакомиться в отчетах Академии Конъюнктуры Промышленных Рынков «Рынок цемента в России» и «Рынок газобетона автоклавного и неавтоклавного способов твердения в России».