ИНГИБИТОРЫ КОРРОЗИИ В НЕФТЕДОБЫЧЕ |
Ежегодно около четверти всего произведенного в мире металла теряется в результате протекания коррозионных процессов. Затраты на ремонт и замену аппаратуры и коммуникаций химических производств во много раз превышают стоимость материала, из |
По данным исполнительного директора Российского союза химиков Игоря Кукушкина, в российской химической промышленности уровень коррозионного износа в 2 раза выше, чем на Западе. Под угрозой аварийного разрушения по причине коррозии находится до 50 % металлоконструкций российской химической отрасли. Обманчивая "экономия" средств, при несвоевременном выполнении защиты металла от коррозионного износа или некачественное проведение данных работ в конечном результате приводят к значительным потерям - по оценкам экспертов годовые убытки от коррозии на территории стран СНГ составляют 60-80 млрд. долларов. При добыче и транспортировке нефти из-за наличия в ней воды, сероводорода и углекислого газа, и возникающей вследствие этого коррозии, наносится большой вред нефтепромысловому оборудованию и нефтепроводам. В настоящее время для защиты оборудования от коррозии используются различные неметаллические и металлические покрытия, ингибиторы коррозии и электрохимическая защита. В основе этого взаимодействия лежат химические и электрохимические реакции, а иногда и механическое воздействие внешней среды. Способность металлов сопротивляться воздействию среды называется коррозионной стойкостью или химическим сопротивлением материала. Металл, подвергающийся коррозии, называют корродирующим металлом, а среда, в которой протекает коррозионный процесс - коррозионной средой. В результате коррозии изменяются свойства металла, и часто происходит ухудшение его функциональных характеристик. Металл при коррозии может частично или полностью разрушаться. Химические соединения, образующиеся в результате взаимодействия металла и коррозионной среды, называют продуктами коррозии. Продукты коррозии могут оставаться на поверхности металла в виде оксидных пленок, окалины или ржавчины. В зависимости от степени адгезии их с поверхностью металла наблюдаются различные случаи. Например, ржавчина на поверхности железных сплавов образует рыхлый слой, процесс коррозии распространяется далеко вглубь металла и может привести к образованию сквозных язв и свищей. Напротив, при окислении алюминия на поверхности образуется плотная сплошная пленка оксидов, которая предохраняет металл от дальнейшего разрушения. Коррозия является физико-химическим процессом, и закономерности ее протекания определяются общими законами термодинамики и кинетики гетерогенных систем. Различают внутренние и внешние факторы коррозии. Внутренние факторы характеризуют влияние на вид и скорость коррозии природы металла (состав, структура и т.д.). Внешние факторы определяют влияние состава коррозионной среды и условий протекания коррозии (температура, давление и т.д.). Коррозионные процессы классифицируют по механизму взаимодействия металлов с внешней средой; по виду коррозионной среды и условиям протекания процесса; по характеру коррозионных разрушений; по видам дополнительных воздействий, которым подвергается металл одновременно с действием коррозионной среды. Виды коррозии По механизму процесса различают химическую и электрохимическую коррозию металлов. Химическая коррозия — это процесс взаимодействия металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента среды протекают единовременно в одном акте. Продукты взаимодействия пространственно не разделены. Электрохимическая коррозия — это процесс взаимодействия металла с коррозионной средой (раствором электролита), при котором ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала. По виду коррозионной среды и условиям протекания различают несколько видов коррозии. Газовая коррозия - это химическая коррозия металлов в газовой среде при минимальном содержании влаги (как правило не более 0,1%) или при высоких температурах. В химической и нефтехимической промышленности такой вид коррозии встречается часто. Например, при получении серной кислоты на стадии окисления диоксида серы, при синтезе аммиака, получении азотной кислоты и хлористого водорода, в процессах синтеза органических спиртов, крекинга нефти и т.д. Атмосферная коррозия — это коррозия металлов в атмосфере воздуха или любого влажного газа. Подземная коррозия — это коррозия металлов в почвах и грунтах. Биокоррозия — это коррозия, протекающая под влиянием жизнедеятельности микроорганизмов. Контактная коррозия — это вид коррозии, вызванный контактом металлов, имеющих разные стационарные потенциалы в данном электролите. Радиационная коррозия - это коррозия, обусловленная действием радиоактивного излучения. Коррозия внешним током и коррозия блуждающим током. В первом случае — это коррозия металла, возникающая под воздействием тока от внешнего источника. Во втором случае — под воздействием блуждающего тока. Коррозия под напряжением — коррозия, вызванная одновременным воздействием коррозионной среды и механических напряжений. Если это растягивающие напряжения, то может произойти растрескивание металла. Это очень опасный вид коррозии, особенно для конструкций, испытывающих механические нагрузки (оси, рессоры, автоклавы, паровые котлы, турбины и т.д.). Если металлические изделия подвергаются циклическим растягивающим напряжениям, то можно вызвать коррозионную усталость. Происходит понижение предела усталости металла. Такому виду коррозии подвержены рессоры автомобилей, канаты, валки прокатных станов. Коррозионная кавитация — разрушение металла, обусловленное одновременным коррозионным и ударным воздействием внешней среды. |
Фреттинг-коррозия — это коррозия, вызванная одновременно вибрацией и воздействием коррозионной среды. Устранить коррозию при трении или вибрации возможно правильным выбором конструкционного материала, снижением коэффициента трения, применением покрытий и т.д. Коррозия называется сплошной, если она охватывает всю поверхность металла. Сплошная коррозия может быть равномерной, если процесс протекает с одинаковой скоростью по всей поверхности металла, и неравномерной когда скорость процесса неодинакова на различных участках поверхности. Равномерная коррозия наблюдается, например, при коррозии железных труб на воздухе. При избирательной коррозии разрушается одна структурная составляющая или один компонент сплава. В качестве примеров можно привести графитизацию чугуна или обесцинкование латуней. Местная (локальная) коррозия охватывает отдельные участки поверхности металла. Местная коррозия может быть выражена в виде отдельных пятен, не сильно углубленных в толщу металла; язв - разрушений, имеющих вид раковины, сильно углубленной в толщу металла, или точек (питтингов), глубоко проникающих в металл. Первый вид наблюдается, например, при коррозии латуни в морской воде. Язвенная коррозия отмечена у сталей в грунте, а питтинговая — у аустенитной хромоникелевой стали в морской воде. Подповерхностная коррозия начинается на поверхности, но затем распространяется в глубине металла. Продукты коррозии оказываются сосредоточенными в полостях металла. Этот вид коррозии вызывает вспучивание и расслоение металлических изделий. Межкристаллитная коррозия характеризуется разрушением металла по границам зерен. Она особенно опасна тем, что внешний вид металла не меняется, но он быстро теряет прочность и пластичность и легко разрушается. Связано это с образованием между зернами рыхлых малопрочных продуктов коррозии. Этому виду разрушений особенно подвержены хромистые и хромоникелевые стали, никелевые и алюминиевые сплавы. Щелевая коррозия вызывает разрушение металла под прокладками, в зазорах, резьбовых креплениях и т.д. Классификация ингибиторов коррозии: Согласно стандарту ISO 8044-1986 ингибиторы коррозии – это наиболее технологичный и эффективный способ борьбы с коррозией нефтедобывающего оборудования, в связи с этим они нашли широкое применение в нефтяной и газовой промышленности. Ингибиторами коррозии (ИК) называют химические соединения, которые, присутствуя в коррозионной системе в достаточной концентрации, уменьшают скорость коррозии без значительного изменения концентрации любого коррозионного реагента. Ингибиторами коррозии могут быть и композиции химических соединений. Содержание ингибиторов в коррозионной среде должно быть небольшим. Ингибиторы коррозии подразделяются: Действие ингибиторов коррозии обусловлено изменением состояния поверхности металла вследствие адсорбции ингибитора или образования с катионами металла труднорастворимых соединений. Защитные слои, создаваемые ингибиторами коррозии, всегда тоньше наносимых покрытий. Ингибиторы коррозии могут действовать двумя путями: уменьшать площадь активной поверхности или изменять энергию активации коррозионного процесса. Катодные и анодные ингибиторы замедляют соответствующие электродные реакции, смешенные ингибиторы изменяют скорость обеих реакций. Адсорбция и формирование на металле защитных слоев обусловлены зарядом частиц ингибитора и способностью образовывать с поверхностью химические связи. Катодные ингибиторы коррозии замедляют катодные реакции или активное растворение металла. Для предотвращения локальной коррозии более эффективны анионные ингибиторы. Часто для лучшей защиты металлов от коррозии используют композиции ингибиторов с различными добавками. При этом может наблюдаться: Неорганические ингибиторы коррозии. Способностью замедлять коррозию металлов в агрессивных средах обладают многие неорганические вещества. Ингибирующее действие этих соединений обуславливается присутствием в них катионов (Са2+, Zn2+, Ni2+ , As3+, Bi3+, Sb3+) или анионов (CrO2-4, Cr202-7, NO-2, SiO2-3, PO3-4). Экранирующие катодные ингибиторы коррозии — это соединения, которые образуют на микрокатодах нерастворимые соединения, отлагающиеся в виде изолирующего защитного слоя. Для железа в водной среде такими соединениями могут быть ZnSO4, ZnCl2, а чаще Са(НС03)2. Бикарбонат кальция Са(НС03)2 — самый дешевый катодный экранирующий ингибитор, применяемый для защиты от коррозии стали в системах водоснабжения. Бикарбонат кальция в подщелоченной среде образует нерастворимые соединения СаСОз, осаждающиеся на поверхности, изолируя ее от электролита. Анодные неорганические ингибиторы коррозии образуют на поверхности металла тонкие (~ 0,01 мкм) пленки, которые тормозят переход металла в раствор. К группе анодных замедлителей коррозии относятся химические соединения — пленкообразователи и окислители, часто называемые пассиваторами. Катодно-анодные неорганические ингибиторы, например KJ, КВr в растворах кислот, тормозят в равной степени анодный и катодный процессы за счет образования на поверхности металла хемосорбционного слоя. Пленкообразующие ингибиторы защищают металл, создавая на его поверхности фазовые или адсорбционные пленки. В их число входят NaOH, Na2C03 и фосфаты. Наибольшее распространение получили фосфаты, которые широко используют для защиты железа и стали в системе хозяйственных и коммунальных стоков. |
В присутствии фосфатов на поверхности железа образуется защитная пленка. Она состоит из гидроксида железа, уплотненного фосфатом железа. Для большего защитного эффекта фосфаты часто используются в смеси с полифосфатами. Пассиваторы тормозят анодную реакцию растворения металла благодаря образованию на его поверхности оксидов. Эта реакция может протекать только на металлах, склонных к пассивации. Пассиваторы являются хорошими, но опасными ингибиторами. При неверно выбранной концентрации, в присутствие ионов Сl- или при несоответствующей кислотности среды, они могут ускорить коррозию металла, и в частности вызвать очень опасную точечную коррозию. Хроматы и бихроматы натрия и калия используются как ингибиторы коррозии железа, оцинкованной стали, меди, латуни и алюминия в промышленных водных системах. Оксидная пленка состоит из 25 % Cr203 и 75 % Fe203 . Нитриты применяются в качестве ингибиторов коррозии многих металлов (кроме цинка и меди) при рН более 5. Они дешевы и эффективны в случае присутствия ржавчины. Защитное действие нитритов состоит в образовании поверхностной оксидной пленки. Силикаты относятся к ингибиторам коррозии смешанного действия, уменьшая скорости как катодной, так и анодной реакций. Действие силикатов состоит в нейтрализации растворенного в воде углекислого газа и в образовании защитной пленки на поверхности металла. Пленка не имеет постоянного состава. По структуре она напоминает гель кремневой кислоты, в которой адсорбируются соединения железа и соли жесткости. Ее толщина обычно равна около 0,002 мм. Полифосфаты — растворимые в воде соединения метафосфатов общей формулы (МеР03)n. Защитное действие полифосфатов состоит в образовании непроницаемой защитной пленки на поверхности металла. В водных растворах происходит медленный гидролиз полифосфатов, в результате образуются ортофосфаты В присутствии Са2+ и Fe3+ на поверхности образуется непроницаемая защитная пленка. Органические ингибиторы коррозии. Многие органические соединения способны замедлить коррозию металла. Органические соединения — это ингибиторы смешанного действия, т.е. они воздействуют на скорость как катодной, так и анодной реакций. Органические ингибиторы коррозии адсорбируются только на поверхности металла. Продукты коррозии их не адсорбируют. Поэтому эти ингибиторы применяют при кислотном травлении металлов для очистки последних от ржавчины, окалины, накипи. Органическими ингибиторами коррозии чаще всего бывают алифатические и ароматические соединения, имеющие в своем составе атомы азота, серы и кислорода. Тиолы (меркаптаны), а также органические сульфиды и дисульфиды проявляют более сильное ингибирующее действие по сравнению с аминами. Основные представители этого класса — тиомочевина, бензотриазол, алифатические меркаптаны, дибензилсульфоксид. Органические кислоты и их соли применяют как ингибиторы коррозии железа в кислотах, маслах и электролитах, а также как ингибиторы процесса наводороживания. Наличие в органических кислотах амино- и гидроксильных групп улучшает из защитные свойства. К настоящему времени известны десятки индивидуальных веществ и смесей на их основе как эффективные замедлители коррозии. Они выявлены эмпирическим путем на основе прямых коррозионных испытаний. За последние десятилетия достигнуты значительные успехи в развитии научно обоснованного подбора адсорбционных ингибиторов и понимании механизма их защитного действия. Ингибиторы для защиты от коррозии используются в нефтегазовой отрасли с 1940-х годов. Ингибиторы чаще всего выражаются в частях на миллион: обычно от 15 до 50 граммов на тонну жидкости. Системы промысловых трубопроводов похожи на ветви дерева: они расходятся в разных направлениях из одной точки. Поэтому добавление ингибитора на входе в трубопровод позволяет защитить его по всей длине на расстоянии до нескольких сотен километров. На рисунке 1 видно как влияет добавление ингибитора коррозии на внутреннюю поверхность труб.
Рис. 1 Описание сырьевой базы и технология производства Исходным сырьём для производства ингибиторов коррозии использующихся в нефтедобыче являются различные соединения аминов, имидозалины, таловое масло, а также различные фосфоросодержащие соединения, жирные кислоты. К сожалению, анализирую рынок сырьевой продукции достаточно сложно подсчитать общие объёмы производства данных химических веществ, необходимых для приготовления ингибиторов коррозии. В настоящее время используется порядка 15-17 тыс. азотсодержащих соединений (различных аминов, имидозалинов), и порядка 3 тыс. фосфоросодержащих соединений. За последние годы сильного роста производства данных веществ не наблюдалось и оставалось на уровне 5-7% в год. В настоящее время в России существует несколько компаний производящих сырьё: ОАО «Нижнекамскнефтехим», ОАО «Казаньоргсинтез», ОАО «Синтез-ОКА», ОАО «Уралхимпласт», ЗАО «Каустик», ОАО «Химпром». Как отмечают специалисты данных компаний очень часто в состав ингибиторов коррозии входят отходы химической и нефтехимической промышленности. Стоит отметить, что существующая ресурсная база недостаточна для благоприятного развития производства ингибиторов коррозии. Многие специалисты компаний указывали на то, что в основном один или несколько активных компонентов (основа) поставляется из-за границы, а растворитель используется отечественный. Например, основа поставляется из Германии, Франции, Голландии и других стран Европы, а также из Китая. Технология производства (синтеза) ингибиторов коррозии достаточно проста. У каждой конкретной марки есть рецептура, то есть процентное содержание каждого компонента в смеси. По технологии все компоненты смешиваются вместе с растворителем в реакторе с мешалкой. Основные сложности возникают с разработкой более эффективных и более экономичных ингибиторов коррозии. Практически на каждом предприятии производящим данный продукт есть отдел, занимающийся новыми разработками в данной области. С анализом российского рынка ингибиторов коррозии Вы можете познакомиться в отчете Академии Конъюнктуры Промышленных Рынков «Рынок ингибиторов коррозии в нефтедобыче». Автор: Об авторе: |