Структура реактора Перерабатываемое сырье загружается в реактор сверху через шлюзовую камеру. Снизу подаются воздух и водяной пар. Отбор продукт-газа осуществляется в верхней части реактора, а выгрузка зольного остатка – в нижней, при этом продвижение рабочей массы в реакторе происходит под действием собственного веса. По высоте газификатора располагаются несколько характерных зон. В самых верхних слоях температура поддерживается в пределах 100 200°С. Здесь происходит подсушка вновь поступившего сырья, продуваемого продукт-газом. В результате продукт-газ до некоторой степени насыщается водяным паром. Ниже располагается зона, где преобладают процессы пиролиза и возгонки органических веществ. В бескислородной среде происходит термическое разложение и коксование органической массы. Газ обогащается летучими продуктами пиролиза. В средней части реактора располагается зона газификации, где при температурах 1000 1200°С происходит реакция коксового остатка с кислородом, парами воды и диоксидом углерода с образованием СО и Н2. Некоторая часть углерода сгорает полностью с образованием углекислого газа, за счет чего в зоне газификации поддерживается необходимая температура. Дальше находится зона, где твердый осадок, состоящий в основном из минеральных соединений, постепенно охлаждается в потоке газифицирующего агента, богатого кислородом. Здесь догорают остатки органических соединений и углерода. Горючие материалы полностью превращаются в золу. Нижняя часть реактора – это зона окончательного охлаждения твердого остатка до температуры около 100°С. Экологичные отходы Такая организация процесса термической переработки отходов обеспечивает следующие экологические преимущества по сравнению с методами прямого сжигания: процесс газификации имеет высокий энергетический КПД (до – 95%), позволяющий перерабатывать материалы с малым содержанием горючих составляющих (с зольностью до 90%) и с высокой влажностью (до 60%); низкие – линейные скорости газового потока в реакторе и его фильтрация через слой исходного перерабатываемого материала обеспечивают крайне низкий вынос пылевых частиц с продукт-газом, что дает возможность сильно сократить капитальные затраты на газоочистное и энергетическое оборудование; в некоторых – случаях, когда необходимо проводить очистку газовых выбросов от соединений серы, хлора или фтора, пыли, паров ртути, очищать продукт-газ оказывается проще, чем дымовые газы, благодаря низкой температуре, меньшему объему и более высокой концентрации загрязнителей; кроме того, сера присутствует в продукт-газе в восстановленных формах (H2S, COS), которые много проще поглотить, чем SO2; при газификации происходит частичное разложение азотсодержащих – органических соединений в бескислородной среде, что дает меньшее количество окислов азота в дымовых газах; сжигание в две стадии позволяет резко – уменьшить образование диоксинов (полихлорированных дибензодиоксинов и дибензофуранов), поскольку даже при наличии хлора подавляется появление в дымовых газах ароматических соединений (предшественников диоксинов) и обеспечивается низкое содержание пылевых частиц (катализаторов образования диоксинов в дымовых газах); зола, выгружаемая из реактора, имеет низкую – температуру и практически не содержит недогоревшего углерода. Следует также отметить, что при утилизации некоторых видов отходов имеется возможность извлечения из продукт-газа товарных материалов для последующей переработки (например, нефти и др.). Кроме того, выбор оборудования для утилизации тепла при сжигании продукт-газа не ограничивается паровым или водяным котлом – возможно применение газовых турбин и энергетических дизелей – таким образом, предлагаемая схема переработки легче вписывается в имеющуюся промышленную инфраструктуру. Работающая установка В настоящее время в Институте проблем химической физики РАН на основе метода газификации конденсированных топлив в режиме сверхадиабатического горения разработан уже целый ряд технологий утилизации низкосортных топлив и горючих отходов. Это, например, процессы газификации низкосортных углей и угольных отходов с получением энергетического газа; переработки изношенных шин и резинотехнических изделий с получением металлокорда, порошка окиси цинка, нефтеподобного пиролизного масла и горючего газа; переработки древесных отходов и отходов целлюлозно-бумажной промышленности (в том числе лигнина) с получением энергетического газа и пиролизных смол; утилизации нефтеотходов и нефтешламов; сжигания ила биологической очистки канализационных стоков; обезвреживания ряда промышленных отходов, в том числе лакокрасочных отходов, отходов полимеров, отработанных фильтров, промасленных опилок и ветоши, отходов химического производства; сжигания биомассы. Эти процессы отработаны на лабораторных и пилотных установках. Была создана, например, установка для переработки ТБО непрерывного действия производительностью две тонны в час (производительность можно повысить, наращивая число модулей-реакторов). Реактор-газификатор здесь имеет рабочий диаметр 1,5 м и высоту 7,3 м. Установка потребляет 1800 м3 воздуха и до 700 кг пара в час. Тепловая ее мощность, получаемая при сжигании продукт-газа, – 5 МВт. Вырабатываемая тепловая энергия используется для нужд горячего водоснабжения города. В настоящее время ведется разработка реакторов иных типоразмеров. Кроме того, начата разработка газовой турбины, работающей на получаемом продукт-газе, в комплекте с реактором-газификатором. Определенные в ходе испытаний характеристики газовых выбросов подтвердили экологическую чистоту процесса при сжигании ТБО. Так, концентрация диоксинов в дымовых газах, даже без их очистки, не превышает 2х10 10 г/м3. Твердый остаток от сжигания может быть безопасно захоронен; как вариант процесса предусмотрено остекловывание золы с тем, чтобы исключить выщелачивание тяжелых металлов. Между тем именно в связи с невозможностью ликвидации негативных последствий высокотемпературного пиролиза в свое время потерпели неудачу мусороперерабатывающие заводы, использующие метод газификации твердых бытовых отходов, в США и других западных странах. (См., например, «Отчет союза охраны окружающей среды «Blue Ridge» на сайте www.ecolog.info ;– прим. ред.). Анатолий АЛАДЬИН, Павел АНДРЕЕВ Энергетика и промышленность России
|