Концепция бесплатного, возобновляемого и неистощимого источника электрической энергии, которым может стать солнце – это идеальный сценарий, к воплощению которого стремятся правительства многих стран и активисты экологических организаций. Возможно, она видится им как ряды фотогальванических элементов, расположенных на крышах зданий или сбор урожая с акров солнечных энергоцентров. По данным организации «Energy Savings Trust», самый быстрый рост потребления энергии происходит не в области неэкономичного автотранспорта или развивающегося пневмотранспорта, а в области потребительских электронных приборов, например мобильных телефонов и MP3-плееров. Наша страсть к этим вещицам безгранична. Солнечная энергия используется в потребительской электронике почти 30 лет. Первыми переносными механизмами, использующими энергию солнца, были портативные калькуляторы. В конце 1970х годов эти устройства впервые начали производить из компонентов с низким энергопотреблением, например жидкокристаллические экраны (LCD). С тех пор потребности в энергии у портативных потребительских электроустройств росли, а их функциональность повышалась. Потребность в энергии у типичного карманного калькулятора может не превышать нескольких миллиамперов, а современный «интеллектуальный» телефон с процессором 400 мегагерц, несколькими гигабайтами энергонезависимой памяти, цветным экраном, стереозвуком и поддержкой беспроводной связи с высокой скоростью передачи данных обычно может использовать несколько ватт энергии в те периоды, когда он не находится в режиме ожидания. К сожалению, развитие технологий по управлению питанием не поспевает за потребностями в питании мультимедийных устройств. Помимо решения экологических проблем производители потребительской электроники хотят, чтобы их устройства дольше работали между сеансами зарядки. Хотя солнечные энергетические элементы далеко не являются панацеей, но их использование может увеличить срок работы без проводов – тем не менее, возможно, придется решить не одну значительную проблему. Проблемой номер один является эффективность фотогальванических элементов. Гелиоэнергетика должна быть более эффективной во время преобразования солнечной энергии в электричество. Только представьте себе, в идеальных условиях солнце может производить 10,000 ватт энергии на квадратный метр. Несмотря на всю неэффективность одного солнечного элемента, он может конвертировать достаточное количество свободной энергии для полной зарядки этих устройств всего лишь за несколько часов. Идеальные условия могут возникнуть только в середине дня или рядом с экватором. Даже если жить в субтропиках, все равно будет невелика вероятность регулярных прогулок под дневным солнцем с мобильным телефоном, попадающим под его лучи. Поэтому эти устройства должны работать в различных окружениях – как в помещении, так и снаружи – где присутствие солнца будет значительно слабее или вообще будет отсутствовать. Например, в условиях окружающего освещения в помещении – где единственный источник света является искусственным, количество доступной энергии будет в 10,000 раз меньше, чем в присутствии солнца. Хотя этой энергии все равно достаточно для получения 10 В на квадратный метр, сегодняшние фотогальванические элементы слишком неэффективны для сбора достаточного количества энергии для питания чего-то большего, чем карманный калькулятор. Дешевые и бесчисленные Проще говоря, для того, чтобы внедрять солнечные элементы в портативные устройства, они должны быть дешевыми, их должно быть много и они должны эффективно преобразовывать энергию солнца в полезную энергию. Такие материалы как арсенид галлия могут повысить эффективность солнечных элементов, если их внедрить в изделия, но они настолько редки, что их использование становится неоправданно дорогим. В настоящий момент отрасль производства фотогальванических элементов главным образом опирается на солнечные элементы из кристаллического кремния. Тем не менее, по-прежнему остается такой вопрос, как высокая стоимость производства элементов этого типа. Можно использовать другие материалы, но их эффективность гораздо ниже. Одной из организаций, предпринимающих попытки увеличить эффективность современных солнечных элементов, является Межуниверситетский Центр Микроэлектроники (IMEC). Он представляет собой исследовательский комплекс на окраине города Левен в Бельгии. Его филиалы разбросаны по всей Фландрии. «Кремний – прекрасный материал, так как он устойчив и не токсичен», объясняет Гай Бьюкарн, руководитель группы IMEC по работе с технологиями солнечных элементов, который указывает на свою стратегию по производству фотоэлектричества из дешевого кремния. Представители IMEC верят, что стоимость солнечных элементов и модулей можно снизить, уменьшая количество кремния и производя солнечные элементы на основе кремниевых пластин толщиной 100-150 микрон (одна миллионная метра) вместо традиционных пластин толщиной 220 микрон. Группа Бьюкарна также рассматривает возможность производства тонкопленочных солнечных элементов на дешевой подложке, например на стекле или керамике. По словам Бьюкарна, главной проблемой является улучшение пассивации поверхности (процесс, защищающий ее от окисления или загрязнения). К настоящему моменту группа получила эффективность более 17,6 процента на поликристаллических подложках большой площади.
|