В ближайшей перспективе основным производственным процессом получения водорода и его производных в промышленных масштабах была и остается конверсия природного газа. По мере роста затрат на добычу и доставку газа с отдаленных газопромыслов всё большую сравнительную эффективность начинают приобретать технологии, сокращающие расход газа, сжигаемого как топливо, не только в энергетике, но и в других отраслях, а также в самой газовой промышленности. С этой точки зрения в перспективе начнут формироваться экономические стимулы к созданию комбинированых технологий, в которых значительная часть энергетических процессов будет переводиться с углеводородного топлива на новые более эффективные и безопасные для окружающей среды энергоисточники и, в первую очередь, для крупнотоннажных производств и большой энергетики – на высокотемпературные ядерные реакторы следующего поколения. Ведущей разработкой высокотемпературных газоохлаждаемых реакторов для различного применения стал проект модульного реакторного блока ГТ-МГР, разрабатываемый совместными усилиями компаний России, США, Японии. На базе этого проекта по заказу Концерна «Росэнергоатом» выполнена концептуальная проектная проработка возможности привязки к реактору МГР производства водорода. Такой проект с ядерной энергоустановкой МГР-Т был проработан в сочетании с новым процессом производства водорода путем паровой адиабатической конверсии метана (АКМ) (см. .http://isjaee.hydrogen.ru/?pid=831). Принципиальные особенности технологии АКМ как в привязке к ВТГР, так и при работе на сжигании отбросных газов в производстве синтез-газа (смесь водорода и оксидов углерода) обеспечивают бескислородное производство метанола и его производных при относительно невысоких капитальных затратах. Технологии, предназначенные для доставки природного газа из отдаленных районов к потребителям, используют либо трубопроводный транспорт высокого давления, либо криогенные технологии получения сжиженного газа (LNG), либо, как это всё больше обсуждается, производство жидких продуктов из газа, так называемые технологии gas-to-liquid (GTL). Каждая из этих технологий имеет конкурентные выгоды и обладает, в свою очередь, недостатками, которые способны менять приоритетность технологий в зависимости от поставленной коммерческой задачи и условий её реализации. Традиционные GTL продукты включают в себя, но не ограничиваются этим перечнем: метанол, уксусную кислоту, олефины, диметиловый эфир (ДМЭ), мочевину, аммиак, минеральные удобрения и синтетические углеводороды, производимые в процессе Фишера-Тропша (Ф-Т) и др. Процесс Ф-Т производит главным образом углеводородные синтетические продукты с различной длиной углеродной цепи, позволяя создавать тем самым низкокипящие алканы, алкены, полиоксиметилены, нафту, дистилляты, применяемые как реактивное или моторное топливо, смазочные масла, парафины. GTL продукты могут распределяться и применяться по уже существующим отраслям, включая, в первую очередь, транспорт, с помощью существующей инфраструктуры. Активность в области создания GTL производств возрастает: рассматривается до 55 проектов суммарной производительностью около 2 млн. барр./сут. (до 100 млн. т/год) с общим потреблением газа 166 млрд. м3/год. Около 20 крупнейших компаний нефтегазового сектора во главе с ExxonMobil, Shell, BP, ENI, ConocoPhillips, Sasol и др. ведут разработки технологий и создание производств в этой области. Мощность отдельных заводов выходит на 2 млн.т/год.
|