АЛЮМОКЕРАМИКА ЗАЩИЩАЕТ ЧЕРНЫЕ МЕТАЛЛЫ Одной из достаточно сложных проблем нашей металлической цивилизации является защита изделий от воздействия внешней среды. Лучшие научные силы мира направлены на расшифровку механизма коррозионного разрушения и выработку способов защиты. Тем не менее, каждая шестая доменная печь работает на компенсацию потерь от коррозионного разрушения. Кроме прямых убытков, которые несут экономики стран от коррозии, имеют место экологические и механические аварии, сопровождающиеся загрязнением среды обитания человека. В странах СНГ эти проблемы особенно обострились в связи со сменой способа управления экономикой. Игнорирование проблемы коррозионной защиты в масштабах страны приведет в итоге к лавинообразному катастрофическому разрушению механизмов и конструкций, начиная от сельхозмашин до трубопроводов и мостов. Ситуацию нельзя недооценивать, и поэтому эффективные разработки по решению проблемы коррозионной защиты следует приветствовать и способствовать их реализации. В настоящее время продвижение на рынок подобных конкурентноспособных разработок требует комплексного решения задачи, начиная от разработки эффективных экологически безопасных антикоррозионных материалов и технологии их нанесения до разработки новых способов строительства из защищенных элементов и оборудования для нанесения покрытия в полевых условиях. Уверенным шагом именно в таком направлении решения проблемы антикоррозийной защиты является разработка нового композиционного алюмокерамического покрытия, а также технологии и оборудования для его нанесения. Начнем с того, что прямые и косвенные потери от коррозии конструкций и сооружений из черных металлов (трубопроводов, корпусов судов, нефтяных платформ, резурвуаров, мостов и т.д.), несмотря на большой скачок в развитии материалов покрытий и технологий их нанесения, остаются велики даже в технически передовых странах. В России же практически отсутствуют заводы по изготовлению проката и труб мирового уровня, оснащенные высокомеханизированным оборудование по нанесению эффективных защитных покрытий. А ведь задача повышения качества, надежности и долговечности изделий из черных металлов и одновременно сокращения сроков и стоимости строительства остается крайне актуальной. От решения ее никак не уйти. Это значит, что необходимо осуществить как минимум три взаимосвязанных мероприятия: создание наиболее эффективных экологически безопасных антикоррозионных материалов и индустриальной технологии их нанесения за наименьшую цену; создание современного механизированного и автоматизированного оборудования и заводов по производству труб, проката и других изделий с покрытием; совершенствование технологии строительства конструкций и сооружений из элементов с защитным покрытием. Все это может быть решено с использованием нового композиционного алюмокерамического покрытия, технологии его нанесения и соответствующей аппаратуры. Первоначально данное покрытие разрабатывалось для защиты корпусов ледоколов, нефтяных платформ и других изделий, которые эксплуатируются в сильно и слабо агрессивных средах с рН=2-12 и растворах солей. Оно должно было, наряду с обеспечением коррозионной стойкости, обладать высокими механическими характеристиками - износостойкостью, способностью сохранять свои свойства при гибке и холодной штамповке изделия, эффективно защищать сварные швы и в течение всего периода эксплуатации сохранять защитные и декоративные свойства. Покрытие композиционное, хорошо сцеплено с основой. Состоит из алюминиевой матрицы с равномерно распределенными в нем металлургически связанными частицами керамики и интерметаллидов. Оно получено путем высокоэнергетического напыления расплавленных в плазменном сверхзвуковом потоке частиц алюминия и керамики на предварительно подготовленную поверхность. Алюмокерамическое покрытие выполнит свои функции только при точном обеспечении условий его формирования. При правильно назначенном режиме напыления все частицы алюминиевого порошка прогреваются до полного плавления и разгоняются до скорости 300-500 м/с, а керамики до оплавления с поверхности и скорости 200-400 м/с (в зависимости от плотности материала). Фракционный состав алюминиевого и керамического порошков, параметры их ввода в плазменную струю выбраны таким образом, чтобы максимально возможным способом снизить аэродинамическое дробление расплавленных частиц, повысить количество столкновений и коагуляцию алюминиевых частиц с керамическими в полете. Это способствует лучшему сплавлению разнородных материалов с образованием химических связей и интерметаллидов. При ударе о поверхность изделия частицы деформируются, внедряются в неровности основы и образуют очаги схватывания. Частицы керамики в сравнении с алюминием имеют больший запас тепловой энергии, образуют в покрытии участки микросплавления с интерметаллидами. Вокруг частиц керамики образуются участки с повышенной когезионной связью и плотностью. Эти обстоятельства приводят к формированию хорошо сцепленного с основой и плотного алюминиевого покрытия (пористость - 0,5%) с равномерно распределенными в нем частицами керамики и интерметаллидов. Такое покрытие имеет повышенные коррозионные и механические характеристики. Наличие твердых частиц керамики в мягком матрице алюминия приводит к многократному повышению механической прочности и износостойкости покрытия. При невыполнении указанных условий покрытие представляет собой механическую смесь разнородных материалов с грубой структурой и низкой когезией, хаотичным распределением пор с неравномерными размерами. Именно в этом заключается качественный скачок от широко известных алюминиевых металлизационных покрытий к композиционному алюмокерамическому. В алюмокерамическом покрытии за счет композиционного строения под воздействием агрессивной среды образуется множество микрогальванических элементов, которые стимулируют химические реакции образования нерастворимого осадка. Он плотно закупоривает поры и покрывает шероховатости, выполняет роль диффузионного барьера или пассиватора, предотвращая доступ агрессивной среды к металлу. Поэтому алюмокерамическое покрытие является протекторным пассивирующимся. Для напыления алюмокерамических покрытий на трубы в стационарных и полевых условиях (на соединения труб) используется специальная плазменная аппаратура. Испытания алюмокерамического покрытия при стендовом моделировании эксплуатационных условий работы трубопроводов тепловых сетей показали, что испытуемое покрытие не изменяет своих первоначальных свойств в течение всего периода эксплуатации (не менее 30 лет). Изолированные изделия могут эксплуатироваться и храниться при любой температуре окружающей среды, при этом не требуется дополнительная установка катодной защиты. На сегодняшний день алюмокерамическое покрытие нашло применение в России для защиты труб (в основном тепловых сетей) от коррозии. Тепловые сети являются важным звеном любой системы центрального теплоснабжения, поэтому в транспорт тепловой энергии вкладываются большие капиталовложения, соизмеримые со стоимостью строительства ТЭЦ и крупных котельных. Учитывая, что цена таких трубопроводов сильно возрастает за счет теплоизоляии, составляющей около 20% от общей стоимости строительства трубопроводов, исключительно большое значение приобретают вопросы повышения надежности и коррозионной стойкости. В России в настоящее время находится в эксплуатации около 30 тысяч километров магистральных теплопроводов с диаметром труб 600-1400 мм. Протяженность всех остальных теплосетей с меньшим диаметром труб превышает 190 тысяч километров. Большая часть тепловых сетей построена в 50-70-х годах с применением неэффективных антикоррозионных материалов и конструкций - армопенобетона, битума и минеральной ваты с низкими эксплуатационными характеристиками, поэтому уровень аварий очень высокий. Частые перекладки аварийных и ветхих теплосетей требуют непрерывных раскопок, вскрытия асфальтовых покрытий и приносят колоссальный вред, особенно в крупных городах. При этом практически полностью теряется ежегодно около ста тысяч тонн стальных труб. |