Первыми типами нанонаполнителей, которые вышли на уровень коммерческого применения, являются ноноклеи (модифицированные силикаты слоистой структуры, монтмориллониты) и углеродные нанотрубки. При этом содержание наполнителя составляет всего от 2% до 7% от общей массы конечного компаунда. Углеродные нанотрубки также повышают электропроводимость. В то время как цена на наноклеи достаточно низкая (5,5 фунтов-стерлингов за килограмм), цена углеродных трубок достаточно высока (80 фунтов-стерлингов за грамм), поскольку их производство все еще находится на лабораторном уровне. Тем не менее, себестоимость нанотрубок должна значительно сократиться при освоении массового производства. Введение нанокомпонентов не приводит к существенным изменением условий экструзионного процесса для большинства полимеров, хотя иногда могут возникать некоторые проблемы в связи с насыщением и дисперсией наночастиц внутри полимера. Проблема надежности и безопасности электрических проводов в зданиях может быть решена с помощью нанотехнологии. Пока неизвестно, что произойдет раньше: замена меди наноматериалами или появление серии "умных" машин, потребляющих очень мало или вообще не требующих электроэнергии. Известно, что в кристаллическом графите проводимость вдоль плоскости слоя наиболее высокая среди известных материалов и, напротив, в направлении, перпендикулярном листу, мала. Поэтому ожидается, что электрические кабели, сделанные на основе нанотрубок с необходимой ориентацией, будут иметь при комнатной температуре электропроводность на два порядка выше, чем медные кабели. Добавляя в пространственную структуру алмазоида различные атомы, можно получить материалы с различной электропроводностью, гибкостью и гидрофобностью. Еще одним примером применения нанотехнологии является изготовление обмоточного провода с использованием тонко дисперсного порошка окиси кремния, введенного химическим способом в полиимидную изоляцию. Этот метод позволил улучшить качество готового провода и повысить его температурный индекс С до 280 С для стандартных эмалированных проводов). (по сравнению с 240 В этом контексте следует упомянуть попытки получить "идеально чистый" нанопровод, к которому не пристают частицы пыли, масел, воды. Таким образом, за счет самоочищения провода имеется потенциальная возможность увеличения срока службы катушек и обмоток электродвигателей, магнитов. Проводятся исследования с целью создания наноскопических коаксиальных кабелей для передачи светового сигнала. Основная идея состоит в том, чтобы уменьшить коаксиальный кабель примерно в 10 000 раз, тогда его диаметр будет меньше, чем длина волны видимой области спектра. Созданный образец такого кабеля работает так же, как традиционный коаксиальный кабель, но разница в том, что этот наноскопический кабель имеет диаметр всего 300 нанометров и он короче самой короткой волны видимого света и не видим человеческому глазу. Углеродная нанотрубка заменяет внутренний проводник, пленка оксида алюминия заменяет пластмассовый слой, а покрытие из хрома или алюминия заменяет наружную оболочку. В настоящее время длина самых длинных из них не превышает 20 микрометров. Такие коаксиальные нанокабели не являются кандидатами для замены оптических волокон. Как считают ученые, разработка таких кабелей может привести к инновационным решениям в области фоточувствительных элементов, искусственной сетчатки глаза, компонентов квантового компьютера. Существует большая группа сверхпроводящих изделий, которые должны выполнять заданную функцию на протяжении всего срока службы (более 25 лет) и при этом быть абсолютно безвредными для окружающей среды. Такие продукты, к эксплуатационным характеристикам которых предъявляется множество требований и которые часто создаются по индивидуальным заказам, ложились тяжелым бременем на производителей и создавали производственные проблемы еще до наступления наноэры. Постоянный спрос на сверхпроводники с усовершенствованными эксплуатационными характеристиками приводит к разработке новых полимерных, металлических и керамических материалов для кабельной промышленности. Диамагнитные материалы с уникальной способностью проводить электрический ток при минимальном сопротивлении или его отсутствии в условиях температуры ниже критического значения тесно связаны с достижениями нанотехнологии. Открытие так называемых высокотемпературных сверхпроводников на основе керамики (YBCO) позволило достигать состояния сверхпроводимости при температурах жидкого азота (77К), а не жидкого гелия (4К). Использование инновационной технологии деформационного текстурирования дает возможность получать сверхпроводящие ленты, которые могут передавать ток с плотностью на уровне 1000 А/см2. Сверхпроводящая лента с покрытием состоит из трех компонентов: металлической подложки (из никеля или сплава на основе никеля, обычно толщиной 25-50 мкм, полученной при помощи технологии деформационного текстурирования), буферного слоя (нанесенного методом осаждения) и сверхпроводящего слоя YBCO или слоя висмута (полученного при помощи золь-гелевой технология и методом химического осаждения из паровой (газовой) фазы металлоорганических соединений). Многие проблемы, связанные со сверхпроводимостью, уже были преодолены благодаря развитию нанотехнологии. Теперь стало возможным вырастить пленку нужной длины, поддерживающую очень высокие сверхтоки. Провода могут быть изготовлены путем помещения сверхпроводника на основе висмута в серебряные трубки, которые затем нагревают и прокатывают для получения более однородной микроструктуры. Такие провода уже используются в качестве токовводов для ультрахолодных сверхпроводящих магнитов, при этом возможно значительно снизить требуемую мощность системы охлаждения. В настоящее время перед учеными и производителями стоит задача интегрирования высокотемпературных сверхпроводников (ВТСП) в действующие системы. Интенсивные научно-исследовательские и опытно-конструкторские работы в области сверхпроводящих материалов и нанотехнологий для получения конечных продуктов проводятся в США, Европе и Азии. www.ruscable.ru |