новые химические технологии
АНАЛИТИЧЕСКИЙ ПОРТАЛ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ
ПОИСК    

НА ГЛАВНУЮ 

СОДЕРЖАНИЕ:

НАУКА и ТЕХНОЛОГИИ

Базовая химия и нефтехимия

Продукты оргсинтеза ............

Альтернативные топлива, энергетика ...........................

Полимеры ...........................

ТЕНДЕНЦИИ РЫНКА

Мнения, оценки ...................

Законы и практика ...............

Отраслевая статистика .........

ЭКОЛОГИЯ

Промышленная безопасность

Экоиндустрия .......................

Рециклинг ............................

СОТРУДНИЧЕСТВО

Для авторов .........................

Реклама на сайте ................

Контакты .............................

Справочная .........................

Партнеры ............................

СОБЫТИЯ ОТРАСЛИ

Прошедшие мероприятия .....

Будущие мероприятия ...........

ТЕНДЕРЫ

ОБЗОРЫ РЫНКОВ

Исследование рынка кукурузных отрубей в России
Исследование рынка кукурузного зародыша в России
Исследование рынка кукурузного глютена в России
Исследование рынка тканого геотекстиля в России
Исследование рынка геокомпозитных материалов в России
Исследование рынка геомембран в России
Исследование рынка геосеток в России
Исследование рынка георешеток в России
Исследование рынка геотканей в России
Исследование рынка надувных бассейнов в России

>> Все отчеты

ОТЧЕТЫ ПО ТЕМАМ

Базовая химия и нефтехимия
Продукты оргсинтеза
Синтетические смолы и ЛКМ
Нефтепереработка
Минеральные удобрения
Полимеры и синтетические каучуки
Продукция из пластмасс
Биохимия
Автохимия и автокосметика
Смежная продукция
Исследования «Ad Hoc»
Строительство
In English
  Экспорт статей (rss)

Полимеры

СИНТЕТИЧЕСКИЕ КАУЧУКИ: технологии и производство


В основе производства синтетических каучуков лежит процесс полимеризации в присутствии различных катализаторов.


 

Исходным сырьем в получении каучуков является сырая нефть, которую разделяют на фракции (углеводороды определенного размера) и далее уже используют в синтезе необходимых мономеров. Мономеры используют для производства синтетических каучуков различными методами полимеризации.


 

 

Виды полимеризации

В зависимости от фазового состояния среды, в которой протекает реакция полимеризации, различают несколько видов процесса: жидкофазная, газофазная, эмульсионная и растворная полимеризация. Синтетические каучуки, полученные по разным способам полимеризации, отличаются структурой, следовательно, и свойствами.


Газофазная и жидкофазная полимеризация

Полимеризация бутадиена под влиянием металлического натрия в жидкой среде мономера была первым промышленным методом синтеза каучука. Немного позже был разработан и внедрен в промышленность газофазный метод полимеризации бутадиена. Газофазная полимеризация имела ряд преимуществ по сравнению с полимеризацией в среде жидкого мономера (жидкофазная полимеризация): щелочной металл использовался в виде катализаторной пасты, что увеличивало его поверхность. Получаемый полимер получался более однородным по качеству, производство каучука упростилось и стало более безопасным, также появилась возможность частичной механизации.
В качестве основного компонента катализаторной пасты использовались щелочные металлы: натрий, калий и литий. Наибольшее распространение получил натриевый катализатор, но получаемый каучук характеризовался недостаточной морозостойкостью и эластичностью. В присутствии лития каучук получался с меньшим содержанием 1,2-звеньев в составе полибутадиена, каучук имел лучшую морозостойкость и эластичность. При полимеризации на щелочных металлах получались полимеры с высоким молекулярным весом. Из-за возможных неоднородностей катализатора и местных перегревов реакционной массы иногда наблюдалось образование «хрящей» - твердых трехмерных образований, резко ухудшающих качество каучука.
Газофазная полимеризация применялась в 30-е годы, но после введения эмульсионной полимеризации, ее популярность резко снизилась. Сегодня газофазная полимеризация сохранилась на единичных заводах, но объем производства каучука по данной технологии очень незначителен.
Общим недостатком жидкофазного и газофазного способа полимеризации считается периодичность и невысокое качество каучука по ряду технических показателей.


Эмульсионная полимеризация

Основными преимуществами полимеризации в эмульсии перед полимеризацией в массе мономера (жидкофазной полимеризацией) заключается в том, что процесс протекает с большей скоростью и его можно организовать по непрерывной схеме. Кроме этого процесс хорошо регулируется, так как тепло реакции отводится равномерно, и получаемый полимер имеет более высокий молекулярный вес, более однороден по структуре и качеству. В зависимости от температуры, при которой протекает реакция полимеризации в эмульсии, различают высокотемпературную и низкотемпературную эмульсионную полимеризацию. Низкотемпературные эластомеры обладают более высокими физико-механическими показателями по сравнению с высокотемпературными.

Растворная полимеризация

Полимеризация в растворе обеспечивает эффективный теплообмен в массе раствора, в котором протекает реакция. Поэтому полученный полимер более однороден и обладает лучшим комплексом свойств. Применение органических растворов позволяет использовать в процессе полимеризации различные эффективные каталитические системы, с помощью которых можно осуществлять направленный синтез эластомеров, создавать высокомолекулярные соединения с заданной структурой и свойствами. Технологическая трудность при проведении таких процессов заключается в необходимости работы с катализаторами, многие из которых являются высоко реакционными соединениями, которые изменяют свойства при хранении. Использование таких каталитических систем требует тщательной подготовки и очистки мономеров и растворителей, которые используются в синтезе.

ТЕХНОЛОГИИ ПОЛУЧЕНИЯ НЕКОТОРЫХ СК


Бутадиен-стирольный каучук

Бутадиен-стирольный каучук наиболее широко используемый синтетический каучук. Этот сополимер состоит из двух мономеров: стирола и бутадиена. Базовая технология производства была изобретена в 1927 году в Германии. Активная катализаторная система сшивала молекулы мономеров, которые находились в виде водной эмульсии, и образовывала бутадиен-стирольные (α-метилстирольные) звенья. Эмульсия образовывалась под действием поверхностно-активных веществ или мыла. Данный процесс был назван эмульсионной полимеризацией.


Получение бутадиен-стирольного каучука по технологии высокотемпературной эмульсионной полимеризации

Мономеры образуют эмульсию в воде под действием поверхностно-активных веществ, и реакция протекает при температуре 50оС. При данной температуре конверсия происходит на 5-6% в час, и процесс полимеризации останавливают при 70-75%, так как более глубокая конверсия может вызвать ухудшение физических свойств. Завершение полимеризации (обрыв роста цепи) осуществляется добавлением ингибитора, таким как гидрохинон, который быстро реагирует с радикалами и окисляющими агентами.
Ингибитор разрушает любой оставшийся инициатор (катализатор) и реагирует со свободными полимерными радикалами. Не прореагировавшие мономеры затем удаляются; сначала испарением при атмосферном давлении с последующим понижением давления  удаляется бутадиен, затем стирол отгонкой низкокипящих фракций водяным паром в колонне.
Дисперсия антиоксиданта добавляется для защиты продукта от окисления. При добавлении соляного раствора латекс частично коагулирует, а затем полностью коагулирует под воздействием серной кислоты. Коагулированные крупицы затем моют, сушат и упаковывают для отгрузки.

Стандартные пропорции эмульсионного бутадиен-стирольного каучука составляют следующее соотношение: 

 Стандартные пропорции эмульсионного бутадиен-стирольного каучука   

  
Наименование  М.ч.
 Бутадиен 5.00
 Стирол 25.00
 N-додецил меркаптан 0.50
 Пероксидисульфат кальция 0.30
 Хлопья мыла 5.00
 Вода 180.00

Получение бутадиенстирольного каучука по технологии низкотемпературной эмульсионной полимеризации
Основная разница между двумя процессами эмульсионной полимеризации (высокотемпературной и низкотемпературной)  в системе инициации. Используя более активную систему инициации, полимеризация может быть осуществлена при 5оС с высоким процентом конверсии. Для инициирования процесса используется высокоэффективная окислительно-восстановительная система. Низкотемпературную полимеризацию останавливают при 60% конверсии.
При понижении температуры эмульсионной сополимеризации бутадиена со стиролом от 960С до -170С в сополимере повышается содержание 1,4-транс-звеньев с 51 до 80% и снижается содержание 1,2-звеньев. При пониженной температуре образуется менее разветвленный сополимер с меньшей полидисперсностью.

Получение бутадиен-стирольного каучука по технологии растворной полимеризации

Растворный бутадиен-стирольный каучук был произведен в небольшом количестве в 1960, когда ученые из компании «Firestone» открыли, что литий может быть использован для производства бутадиен-стирольного каучука растворным методом. Этот процесс стал популярным в поздние 1980-ые. Значительные мощности были построены в США, Европе и Японии, несмотря на  уже существующие  большие мощности эмульсионного бутадиен-стирольного каучука, построенные во время и сразу после Второй Мировой Войны.
Промышленный синтез бутадиен-стирольных в растворе на металлорганических катализаторах осуществляется при сополимеризации бутадиена со стиролом в неполярной среде в присутствии многофункциональных литийорганических соединений.
Полученный продукт имеет узкое молекулярное распределение, меньшее разветвление в цепи, более светлый цвет и меньшее содержание не каучуковой субстанции по сравнению с эмульсионным бутадиен-стирольным каучуком. Как результат, каучук, полученный растворной полимеризацией, имеет лучшую стойкость к истиранию, лучшую гибкость, большую способность к восстановлению после деформации и более низкое тепловыделение, чем эмульсионный каучук. В то время как прочность на растяжение, модуль, прочность на удлинение и цена оказываются сравнимыми.

Технология получения полибутадиенового каучука

Полибутадиеновый каучук производится полимеризацией бутадиена. Советские химики впервые произвели полибутадиеновый каучук в 1932 году под действием металлического натрия. Благодаря этому возникла возможность производить шины из каучука собственного производства и не зависеть от импорта. Но широкую популярность в промышленном использовании и производстве полибутадиеновый каучук получил после открытия металлорганического катализатора для полимеризации бутадиена в углеводородном растворе (50-е годы). В мировом промышленном производстве бутадиеновых каучуков применяют два типа катализаторов: на основе галогенидов титана и алюминийтриалкилов («титановая» каталитическая система) и на основе растворимых в углеводородах соединений кобальта и диалкилалюминийхлоридов («кобальтовая» каталитическая система). Также существуют каталитические системы на основе π-аллильных комплексов никеля.
Количество катализатора определяет величину средней молекулярной массы и характер молекулярного распределения получаемого полимера. Так, при низких дозировках катализатора образуются более высокомолекулярные полимеры с узким молекулярно-весовым распределением. Такой полимер, как правило, имеет высокую жесткость и неудовлетворительные технологические свойства. С повышением дозировки катализатора снижается молекулярный вес полимера и расширяется его молекулярное распределение, что положительно сказывается на технологических свойствах каучука.
1,4-цис-бутадиеновые каучуки, получаемые с применением «титановой» и «кобальтовой» каталитических систем, отличается по микроструктуре, пласто-эластическим и технологическим свойствам. «Титановый» каучук содержит 87-92% 1,4-цис-звеньев, а «кобальтовый» - 95-97%. На всех стадиях процесса полимеризации «титановый» каучук имеет узкое молекулярно-весовое распределение. При полимеризации бутадиена под влиянием «кобальтовых» катализаторов до степени превращения 40-50% полимер практически линеен и имеет узкое молекулярное распределение; с ростом цепи образуются разветвления, и полимер приобретает значительную полидисперсность. Отмечается, что в процессе обработки при малых нагрузках более податлив каучук «титановый», а при больших - «кобальтовый».
При использовании литиевого катализатора (например, бутиллития) получается полибутадиеновый каучук с низким содержанием цис-звеньев. Данный каучук относится к разряду спецкаучуков. В частности он применяется в шинной промышленности при производстве протекторов шин. Небольшое содержание данного каучука в рецептуре приводит к улучшению сцепления шины с мокрой дорогой.

Технология получения бутилкаучука

Впервые бутилкаучук был получен в США в 1937 году сополимеризацией изобутилена с небольшим количеством диенового углеводорода при низкой температуре в присутствии катализатора катионной полимеризации.
Процесс производства бутилкаучука связан с использованием низких температур (чтобы реакция началась, необходима температура -96оС). Изобутилен используется 95% чистоты и изопрен 92% чистоты.
Основная часть мирового производства бутилкаучука осуществляется растворной  полимеризацией. Изобутилен и небольшое количество изопрена сополимеризуются по способу катионной полимеризации под действием хлорида алюминия в метилхлориде при -100о - -90о С. Как альтернатива, этот процесс может протекать в углеводородном растворе при той же температуре.

Технология получения этилен пропиленовых каучуков

Данные каучуки являются сополимерами этилена и пропилена (а также диена). Этиленпропиленовый каучук был впервые представлен в 1962 году в США. Его промышленное производство началось в 1963 году, используя стереоспецифичные катализаторы. Этилен пропиленовые каучуки могут быть произведены непрерывным процессом растворной полимеризации. Процесс растворной полимеризации протекает в жидком пропилене. Для сополимеризации этилена с пропиленом применяются различные каталитические системы, в том числе состоящие из алкилпроизводных алюминия (чаще всего триизобутилалюминий или диизобутилалюминийхлорид) и соединений ванадия (например, тетрахлорид ванадия, трихлорокись ванадия, триацетилацетонат ванадия) или титана.    Газофазная полимеризация этиленпропиленового каучука также возможна.

Технология получения цис-1,4-полиизопренового каучука

Данный вид каучука является наиболее важным синтетическим каучуком общего назначения. Обычно его называют «синтетическим натуральным каучуком». Этот каучук является химическим аналогом натурального каучука и практически дублирует его поведение и свойства - химическая формула и структура одинакова с натуральным каучуком. Цис-1,4-полиизопрен производится полимеризацией изопрена. Впервые он был  получен в 1954 году при использовании катализатора Циглера-Натта, который представлял собой тетрахлорид титана в сочетании с триалкил алюминием.
Синтетический полиизопреновый каучук был промышленно представлен в 1960 году компанией «Shell Chemical Company» под названием «Shell Isoprene Rubber». Компания «Goodyear» начала промышленное производство этого каучука в 1962 под названием «Natsyn», а  «Ameripol Inc.» в 1968 году под названием «Ameripol SN». В настоящее время цис-1,4-полиизопреновый каучук представлен 14 различными видами - общего назначения, легкой переработки, высокой чистоты, маслонаполненный и в латексной форме.
С содержанием цис-1,4 - полиизопрена более чем 90%, каучук получают по методу растворной полимеризации при использовании координационных катализаторов.  Изопрен полимеризуется при использовании координационных соединений-катализаторов  или катализатор типа алкил лития для получения цис-1,4-полиизопрен. Цис-1,4-полиизопреновый каучук заданного молекулярного веса может быть также получен анионной полимеризацией.
Координационный катализ в основном используются как смесь триалкила алюминия/тетрахлорида титана в мольном соотношении Al/Ti около 1:1. Координационные катализаторы, используемые в производстве, нерастворимы и функционируют в виде суспензии. Они подходят для производства каучука с содержанием от 96 до 98% цис-1,4-полиизопрена.
Соединения алкил лития также важные катализаторы, используемые в производстве полиизопренового каучука. Это позволяет обеспечить контроль молекулярного массового распределения в каучуке, предотвращает гель образование и не оставляют примесей, способствующие старению резины. В отличие от координационных катализаторов, алкил литиевый катализатор растворим в воде и характеризуется отсутствием стадии завершения реакции. Полиизопрен, полученный при катализе алкил лития, имеет цис-содержание в каучуке от 92 до 95%.
Основными шагами в производстве полиизопренового каучука является подготовка и очистка сырья, полимеризация, деактивация катализатора и его удаление, регенерация растворителя,  осушение и упаковка. На стадии подготовки сырья из мономера удаляются полярные соединения как вода, кислородсодержащие органические соединения, кислород и другие вещества, которые снижают активность катализатора. Активные водородсодержащие соединения и углеводороды как ацетилен, циклопентадиен и циклопентен также исключаются соответствующими процедурами очистки.
Полимеризация протекает в инертном углеводородном растворителе. Полимеризация изопрена под действием координационного катализатора протекает при 50оС, после полимеризации катализатор деактивируют. Катализатор удаляется с помощью спирта или водно-спиртовых растворов. Оставшийся растворитель после полимеризации обрабатывается паром, очищается и используется вновь. Для защиты полимера во время текущих операций и хранения добавляется антиоксидант. На финальной стадии обработки полиизопреновый каучук промывается в воде, осушается и упаковывается.

C текущей ситуацией и прогнозом развития российского рынка синтетических каучуков можно познакомиться в отчете Академии Конъюнктуры Промышленных Рынков «Рынок синтетических каучуков в России». 

Академия Конъюнктуры Промышленных Рынков
Тел.: (495) 918-13-12, (495) 911-58-70
E-mail:
mail@akpr.ru
WWW: www.akpr.ru

Версия для печати | Отправить |  Сделать стартовой |  Добавить в избранное

Куплю

19.04.2011 Белорусские рубли в Москве  Москва

18.04.2011 Индустриальные масла: И-8А, ИГНЕ-68, ИГНЕ-32, ИС-20, ИГС-68,И-5А, И-40А, И-50А, ИЛС-5, ИЛС-10, ИЛС-220(Мо), ИГП, ИТД  Москва

04.04.2011 Куплю Биг-Бэги, МКР на переработку.  Москва

Продам

19.04.2011 Продаем скипидар  Нижний Новгород

19.04.2011 Продаем растворители  Нижний Новгород

19.04.2011 Продаем бочки новые и б/у.  Нижний Новгород

Материалы раздела

БИОПРОИЗВОДНОЕ ПОЛИЭФИРНОЕ ВОЛОКНО ECO CIRCLE PLANTFIBER
СЭНДВИЧ-ПАНЕЛИ INDUSTRIUM
ПОЛИМЕРЫ ИЗ CO2
DUPONT CORIAN В ОТДЕЛКЕ МЕТРО В НЕАПОЛЕ
ЖЕЛЕЗООКИСНЫЕ ПИГМЕНТЫ для ЛИТИЙ-ИОНЫХ БАТАРЕЙ
ШЛЕМЫ ИЗ СКРАПА
МАТЕРИАЛЫ DUPONT CORIAN в ИНТЕРЬЕРАХ «АЭРОЭКСПРЕСС»
КАК ОПРЕДЕЛИТЬ СТОЙКОСТЬ ПОЛИМЕРНОГО ПОКРЫТИЯ?
КАБЕЛЬНЫЕ ЛОТКИ CABLOFIL
ОБЛЕГЧЁННЫЕ ПЛИТЫ SUPERPAN STAR
ПЕРВЫЕ КАРБОНОВЫЕ ДИСКИ
БУДУЩЕЕ ОРГАНИЧЕСКИХ СВЕТОДИОДОВ
НОВЫЕ ПЛЕНКИ для ОПК
БРОНЯ НА ОСНОВЕ САПФИРА
ПОСЛЕДНИЕ РАЗРАБОТКИ BASF ДЛЯ АВТОПРОМА
НОВЫЕ ПОЛИМЕРЫ ДЛЯ МЕДИЦИНЫ
ОРГАНИЧЕСКАЯ ЭЛЕКТРОНИКА
ПОЛИМЕРЫ из ОТХОДОВ ЖИВОТНОВОДСТВА
ГИБКИЕ СОЛНЕЧНЫЕ БАТАРЕИ
ТОНКОПЛЕНОЧНАЯ ФОТОВОЛЬТАИКА
ПОЛИМЕРЫ из ЦЕЛЛЮЛОЗЫ
КОМПОЗИТЫ, АРМИРОВАННЫЕ УГЛЕВОЛОКНОМ
НОВЫЕ ПРОДУКТЫ ИЗ УГЛЕРОДНОГО ВОЛОКНА ДЛЯ СТРОИТЕЛЬСТВА
НОВЫЕ РАСТВОРНЫЕ БУТАДИЕН-СТИРОЛЬНЫХ КАУЧУКИ (S-SBR) «LANXESS»
НАНОПОКРЫТИЯ для ТЕПЛИЦ
НОВЫЕ АДГЕЗИВЫ 3M для ЭЛЕКТРОНИКИ
ИСКУССТВЕННОЕ СЕРДЦЕ
БОЛЬШЕ ГРУЗОВ МОЖНО ПЕРЕВОЗИТЬ В БИГ-БЕГАХ
БИОИЗОПРЕН – БУДУЩЕЕ ШИННОЙ ОТРАСЛИ
«БЕЛКОВЫЕ» МИКРОСХЕМЫ
НОВЫЙ КОАЛЕСЦЕНТНЫЙ ФИЛЬТР GE
АВТОМАТИЗАЦИЯ на «ГАЛОПОЛИМЕРЕ»
НОВАЯ ТЕПЛОИЗОЛЯЦИЯ BASF
ПОЛИЭФИРНЫЕ ТКАНИ ECO STORM
ОПАСНОСТЬ ДЕТСКОЙ БИЖУТЕРИИ
ПОЛУЧЕНИЕ ТОНКОСЛОЙНОГО ФТОРОПЛАСТОВОГО ПОКРЫТИЯ
УГЛЕРОДНЫЕ ВОЛОКНА В АВТОПРОМЕ
«УМНАЯ» СИСТЕМА RFID КОНТРОЛЯ
«ХОЛЛОФАЙБЕР» как МЕЖВЕНЦОВЫЙ УТЕПЛИТЕЛЬ
НОВЫЙ ПРОТЕКТОРНЫЙ АГРЕГАТ «НИЖНЕКАМСКШИНА»
ЗАЩИТНЫЕ МАТЫ NEOPOLEN НА СПОРТИВНЫХ ТРАССАХ
НАНОТЕХНОЛОГИИ ДЛЯ ДОРОЖНОГО СТРОИТЕЛЬСТВА
МАТЕРИАЛЫ DUPONT НА ЕВРО-2012
ПЕРЕРАБОТКА БИОМАССЫ НА ПРЕДПРИЯТИЯХ ЦБК
KELLOGG BROWN: технология получения пропилена из нафты

>>Все статьи

Rambler's Top100 Рейтинг@Mail.ru
Copyright © Newchemistry.ru 2006. All Rights Reserved