Как и всё органические материалы, полимеры подвержены окислению. Это приводит к изменению вязкости, цвета, охрупчиванию изделий и ухудшению физико-механических характеристик. Окисление происходит на каждой стадии существования полимерного материала – при его производстве и хранении, при переработке в изделия и последующем использовании.
|
Окисление также называют деструкцией или старением. Обычно разделяют термомеханическую (в процессе переработки) и термоокислительную (эксплуатация изделия) деструкцию полимерного материала. Различные полимерные материалы обладают различной стойкостью к старению – например, полипропилен сильно подвержен деструкции даже при комнатной температуре, а полистирол и полиметилметакрилат (оргстекло) стабильны даже при температурах переработки. Изделия из чистого полимера используются чрезвычайно редко, а композиции содержат различные функциональные добавки, а также наполнители, пигменты и т.д., которые могут влиять на окислительные процессы в полимерной матрице. Механизм окисления полимеров Процесс взаимодействия полимеров (и других органических соединений) с кислородом называется автоокислением, и представляет собой свободнорадикальную цепную реакцию. Как и все свободнорадикальные реакции, процесс автоокисления необратим, и состоит из трёх стадий: инициирование, рост и разветвление, передача и обрыв цепи. В большинстве случаев процесс окисления полимеров характеризуется наличием индукционного периода, в течение которого не происходит видимых изменений. Механизм возникновения первичных свободных радикалов, инициирующих реакцию, ещё окончательно не выяснен. Прямая реакция углеводородов с молекулярным кислородом кинетически и термодинамически невыгодна. Образование радикалов можно объяснить взаимодействием переходных металлов, или пероксидов (катализаторов), примесей в мономере со следами кислорода во время полимеризации, приводящих к образованию активных пероксидных радикалов, которые отщепляют водород от цепи полимера, и образуют алкил-радикалы. Энергия активации реакции алкил-радикалов с кислородом очень низка, поэтому реакция идёт очень быстро при любой температуре с образованием пероксидных радикалов. Реакция отрыва водорода пероксидным радикалом от полимерной цепи обладает довольно высокой энергией активации и является лимитирующей стадией в процессе автоокисления. В полукристаллических полимерах, к которым относятся полиолефины, термоокислительная деструкция представляет собой гетерогенный процесс. Морфология полимера в значительной степени влияет на процесс диффузии и растворения кислорода, который в полиолефинах происходит преимущественно в аморфных областях. Механические свойства полиолефинов в значительной степени определяются зацеплениями проходных молекул, поэтому окисление в этих областях быстро приводит к снижению прочностных характеристик. Основное влияние на свойства оказывают реакции, приводящие к изменению молекулярной массы и молекулярно-массового распределения полимеров – реакции обрыва цепи и сшивания (образование гель-фракции). Эти изменения приводят к снижению физико-механических свойств и усложняют переработку полимерных материалов. Рис. 1, 2
|