По степени значимости в настоящее время (по данным 2002-03 гг.) производство химических волокон различными методами формования может быть расположено в следующей последовательности: 1) из расплавов полимеров (78...80%); 2) из растворов полимеров мокрым методом (18...20%); 3) из растворов полимеров сухим методом (1,5...2,5%). Преимущество метода формования из расплава определяется как высокой производительностью этого метода по сравнению с остальными, так и возможностями современных методов модифицирования, позволяющими широко варьировать свойства волокон и нитей. Широкое развитие приобрели процессы высокоскоростного формования из расплава (со скоростями до 7000 м в минуту), а также совмещенные процессы формования: вытягивания и текстурирования. Основные тенденции в развитии химических волокон. Развитие производства различных видов многотоннажных химических волокон и нитей в настоящее время имеет следующие особенности: - Наиболее интенсивно растет выпуск полиэфирных волокон, затем полиамидных, полипропиленовых и полиакрилонитрильных волокон; совершенствуются процессы получения вискозных и организация производства гидратцеллюлозных волокон типа лиоцелл, существенное развитие получил процесс производства эластомерных полиуретановых нитей. - Важным направлением развития новых видов химических волокон и волокнистых материалов на их основе является модифицирование волокон - один из наиболее простых и перспективных путей, который позволяет получать их с широкой гаммой заданных функциональных свойств. Методы модифицирования волокон можно подразделить на три группы: 1. Физические методы - с изменением надмолекулярного строения, формы или внешней поверхности волокон. Эти методы используется на стадии формования и последующих обработок волокон. Они позволяют на базе традиционных видов волокнообразующих полимеров получать волокна, нити и текстиль на их основе с существенно улучшенными или полностью измененными функциональными свойствами. Следует отметить, что новый процесс сверхвысокоскоростного формования волокон из расплавов позволил в несколько раз повысить производительность. Кроме того, он позволил получать принципиально новые виды полиэфирных, полиамидных и полипропиленовых нитей с высокой деформативностью, используемых в основном для текстурирования и производства трикотажных изделий. 2. Методы композитной модификации, или методы смешения, когда к основному волокнообразующему полимеру (его расплаву или раствору) добавляются те или иные мелкодисперсные или растворимые компоненты - носители новых свойств. Добавки вводятся на стадии подготовки исходного расплава или раствора к формованию или непосредственно перед формованием. Этот метод широко применяется при получении синтетических, а также вискозных волокон. 3. Методы химической модификации - изменение химического строения волокнообразующего полимера путем сополимеризации при получении исходного полимера или введения новых функциональных групп при обработке сформованных волокон (используется редко), а также при обработке текстильных полотен или изделий. - Большинство выпускаемых в настоящее время химических волокон и нитей являются сополимерными или полученными со специальными функциональными добавками, что позволяет существенно улучшать существующие или придавать новые потребительские свойства текстильным изделиям. Эти методы модифицирования позволили существенно улучшить многие свойства волокон и волокнистых материалов на их основе в рамках существующих технологий. В настоящее время модификация все шире применяется для улучшения функциональных свойств традиционных видов волокон, для создания нового ассортимента текстиля и повышения потребительских свойств изделий, а также для получения их с новым комплексом функциональных свойств. Методы модифицирования волокон позволяют производить следующие текстильные материалы и изделия: окрашенные в массе, антимикробные, огнезащищенные (трудногорючие), малосминающиеся, с заданной гигроскопичностью или гидрофобностью, мало загрязняющиеся и обладающие многими другими функциональными свойствами. Волокна на основе воспроизводимых растительных ресурсов. Как природные, так и химические целлюлозные волокна составляют особую группу материалов, объединенных особенностями свойств исходного растительного полимера - целлюлозы (табл. 2). Целлюлоза в растениях в виде трахеи (растительных клеток, а после их выделения - волокон) играет роль своеобразного армирующего материала, но в некоторых случаях несет и некоторые другие функции (например, способствует распространению семян хлопчатника). В во всех этих функциях растительные волокна должны обладать и обладают необходимым уровнем механических свойств - прочностных и деформационных. Химические волокна из возобновляемых растительных ресурсов и волокнистые материалы на их основе безусловно имеют перспективы развития. Целлюлоза как возобновляемое растительное сырье уже сто лет используется в вискозном процессе. Кроме того, начинается развитие процессов прямого растворения целлюлозы с последующим формованием волокон лиоцелл. В химических волокнах (вискозных, лиоцелл и др.) во многом проявляются свойства,присущие исходной целлюлозе, хотя взависимости от метода получения они могут в определенной мере и отличаться от таковых для природных волокон.
Расширение номенклатуры химических волокон привело в последние годы к существенному перераспределению их роли в развитии производства волокнистых материалов. Следует заметить, что сегодня ряд химических волокон может быть изготовлен со свойствами, близкими к природным волокнам, благодаря широкому применению методов физической, композитной и химической модификации. Одним из лидирующих видов волокон для одежды и некоторых видах домашнего текстиля безусловно остается хлопок. Присущие хлопчатобумажным полотнам недостатки - ограниченная биостойкость, сминаемость и некоторые другие - в большой мере могут быть устранены применением методов модификации на стадии отделочных операций. Кроме того, значительное количество текстиля вырабатывается на основе смесей природных волокон с химическими или в виде комбинированных материалов. |